
Copyright 2020, Dennis J. Frailey Software Testing Topics 1

UT Dallas

Software Quality and Software Testing

Part 1 – The Big Picture (How Quality
Relates to Testing)

Part 2 – Fundamental Concepts of
Measurement and Data Analysis

Part 3 – Defect Containment
Part 4 – Measuring Software Structure

Part 5 – Measuring Software Complexity

Copyright 2020, Dennis J. Frailey Software Testing Topics 2

Dennis J. Frailey
Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
Raytheon Co. 1997-2010

Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017

Adjunct Professor, UT Arlington, 2014-present

Areas of specialty: software development
process, software project management,

software quality engineering, software metrics,
compiler design, operating system design, real-

time system design, computer architecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 3

A Recommended Book on Measurement

Some of the material covered
today is taken from this book.

Although not a book on testing,
it is a very good book on

measurement and addresses
several aspects of testing.

Software Metrics – A Rigorous and Practical Approach
By Norman Fenton and James Bieman

Copyright 2020, Dennis J. Frailey Software Testing Topics 4

More Recommended References

SWX – The Software Extension to the Project
Management Body of Knowledge, available from PMI
(www.pmi.com) and the IEEE Computer Society
(www.computer.org).

– This is a general reference that may be important if you want
to apply some of today’s techniques in project management.

SWEBOK – The Guide to the Software Engineering Body
of Knowledge, available from the IEEE Computer Society
and also at www.swebok.org

– This is another general reference that gives an overall picture
of software engineering knowledge and summarizes topics that
any software engineer should know about.

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/

Copyright 2020, Dennis J. Frailey Software Testing Topics 5

Part 1

The Big Picture – How Quality
Relates to Testing and Other

Aspects of Software Engineering

Copyright 2020, Dennis J. Frailey Software Testing Topics 6

Test and Evaluation

Evaluation: Appraising a product through one of the
following:
– Examination, analysis, demonstration
– Testing
– or other means

Testing: Exercising a system to improve confidence
that it satisfies requirements or to identify
variations between desired and actual behavior.

“Evaluation” is the broader term.

Copyright 2020, Dennis J. Frailey Software Testing Topics 7

But What Are We Appraising?
What is “Desired Behavior”?

§ Satisfies requirements
§ Works correctly
§ Does what I want it to do
§ Does no harm
§ Reliable – I can depend on it
§ Easy to use
§ Portable
§ Easy to update and maintain
§ Easy to test
§ Runs efficiently / fast
§ Consistent
§ …

Can we test for
these

characteristics?

Can we
measure them?

Copyright 2020, Dennis J. Frailey Software Testing Topics 8

But What Are We Appraising?
What is “Desired Behavior”?

§ Satisfies requirements
§ Works correctly
§ Does what I want it to do
§ Does no harm
§ Reliable – I can depend on it
§ Easy to use
§ Portable
§ Easy to update and maintain
§ Easy to test
§ Runs efficiently / fast
§ Consistent
§ …

These are all
characteristics of
Software Quality

I.e., testing is one
way to assess

software quality.

Copyright 2020, Dennis J. Frailey Software Testing Topics 9

Downloadable at:
www.swebok.org

Copyright 2020, Dennis J. Frailey Software Testing Topics 10

SWEBOK Facts

§ 3 Editions have been produced since 1998

§ 2 Editors: Pierre Bourque and Richard Fairley

§ 8 Contributing and Co-Editors

§ 15 Knowledge Areas, each with its own Editors
– Each aligned with related ISO and IEEE standards

§ 9-person Change Control Board

§ Over 300 reviewers (chosen due to their expertise in
various aspects of software engineering)
– Over 1500 comments received and adjudicated on various drafts (3rd

edition)

§ 36 Items in Consolidated Reference List

Copyright 2020, Dennis J. Frailey Software Testing Topics 11

The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance
Software Configuration

Management
Software Engineering

Management
Software Engineering

Process

Software Engineering Models
and Methods

Software Quality
Software Engineering
Professional Practice

Software Engineering
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations

Copyright 2020, Dennis J. Frailey Software Testing Topics 12

Software Requirements

Copyright 2020, Dennis J. Frailey Software Testing Topics 13

Software Design

Copyright 2020, Dennis J. Frailey Software Testing Topics 14

Software Construction

Copyright 2020, Dennis J. Frailey Software Testing Topics 15

Software Testing

Copyright 2020, Dennis J. Frailey Software Testing Topics 16

Software Configuration Management

Copyright 2020, Dennis J. Frailey Software Testing Topics 17

Software Engineering Management

Copyright 2020, Dennis J. Frailey Software Testing Topics 18

Software Quality

Copyright 2020, Dennis J. Frailey Software Testing Topics 19

What Do We Mean by
Quality?

Copyright 2020, Dennis J. Frailey Software Testing Topics 20

Concepts of Quality for Products

“Quality is conformance to requirements”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg

Copyright 2020, Dennis J. Frailey Software Testing Topics 21

“Quality is
Conformance to Requirements”

§ If testable requirements can be established, then it is
possible to decide whether the product satisfies the
requirements – by testing it.

§ If measurable quality characteristics can be established,
then it is possible to decide on the extent to which the
product satisfies the requirements – by measuring it.

§ Thus you can avoid disputes and have workable
contractual relationships

However …

Copyright 2020, Dennis J. Frailey Software Testing Topics 22

Issues with
“Conformance to Requirements” (1 of 4)

Who establishes the requirements?

– Sponsor - The one who pays for the product

– End User - The one who will use the product

– Sales or Marketing - The one who will sell the product

– Engineering - The ones who will design and build it

Planetgeek.ch

What the
end user

wants

What the
engineer

builds

Copyright 2020, Dennis J. Frailey Software Testing Topics 23

Issues with
“Conformance to Requirements” (2 of 4)

Are the requirements right?
– consistent

– complete

– visible

– correct

Ø Who determines whether the
requirements are right?

Ø What if you discover a problem later on?

Slideshare.net

Quora.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 24

Issues with
“Conformance to Requirements” (3 of 4)

What about implicit vs. explicit requirements?

– Explicit requirement: pizza should be hot and flavorful

– Implicit requirement: not harmful

Copyright 2020, Dennis J. Frailey Software Testing Topics 25

Issues with
“Conformance to Requirements” (4 of 4)

What about when requirements change during the
development process?

– Who makes the changes?

– Who controls and authorizes the changes?

– Who pays for the consequences of changes?

Copyright 2020, Dennis J. Frailey Software Testing Topics 26

“Quality is
Fitness for Intended Use”

§ This definition is based on a fundamental
concept of law - that a product should be
suitable for the use that it is intended for.

§ This definition accommodates the fact that
we may not be able to fully define the
requirements.

However …

Copyright 2020, Dennis J. Frailey Software Testing Topics 27

Issues with
“Fitness for Intended Use” (1 of 3)

– Consider a TV set

§ which fitness characteristics are not
understood by

– Typical User
– Engineer
– Sales Personnel

– Consider a software program

§ which fitness characteristics are not
understood by

– The typical software developer?
– The typical end user?

Konga.com

Gemtree.com

Who defines fitness?

Copyright 2020, Dennis J. Frailey Software Testing Topics 28

Issues with
“Fitness for Intended Use” (2 of 3)

Different users have different definitions of fitness

– Ease of use for novices

– Control of fine details for experts

– Ease of maintenance for support staff

– Able to survive power failures

– Compatibility with previous system

Ø Uses change as users grow in experience
– Too many “ease of use” and “automatic” features may

frustrate an expert

Theodysseyonline.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 29

Issues with
“Fitness for Intended Use” (3 of 3)

The “pleasant surprise” concept
User gets more than he or she expected

There is often tension between the engineer
knowing better than the customer and the
customer knowing better than the engineer

They really knew what they
were doing when they
designed this software

Copyright 2020, Dennis J. Frailey Software Testing Topics 30

“Quality is
Value to Someone”

§ This definition incorporates the idea that quality
is relative

§ And it places increased emphasis on
understanding what quality means to the
intended user of the software

However …

Copyright 2020, Dennis J. Frailey Software Testing Topics 31

Issues with “Value to Someone” (1 of 4)

Whose opinion counts?

ØYou may need to weigh different opinions

How is the
financial software?

I want hot
games

What
features do
you want?

Does it have
Facebook and

Twitter?

Can it survive
spilled drinks?

Copyright 2020, Dennis J. Frailey Software Testing Topics 32

Issues with “Value to Someone” (2 of 4)

Logic vs Emotion
– “Glitz” v. “Substance”

Which Car
is Best for

Our Family?

Copyright 2020, Dennis J. Frailey Software Testing Topics 33

Issues with “Value to Someone” (3 of 4)

Value depends on What Features are Most Important

– Space Shuttle
§ 0 defects
§ Reliability

– Video Game
§ Good user interface
§ High performance

– School Laptop
§ Rugged
§ Fast
§ Good Battery Life
§ Good Software

Copyright 2020, Dennis J. Frailey Software Testing Topics 34

Issues with “Value to Someone” (4 of 4)

Explicit
§ I need an office
§ It must have a computer
§ And lots of space

Implicit
§ I need a desk
§ And a chair
§ And convenient electrical outlets

Some Needs are Implicit (unstated)

Copyright 2020, Dennis J. Frailey Software Testing Topics 35

Definitions of Software Quality

IEEE: The degree to which the software possesses a
desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply
multiple expectations

Copyright 2020, Dennis J. Frailey Software Testing Topics 36

Summary of Quality Definition Issues

§ You Must Define Quality
– Before you can engineer it into your product
– … and before you can measure it
– … or test whether the product has the desired quality attributes

§ Quality has Multiple Elements
– It reflects a multitude of expectations

§ Quality is Relative
– Quality is in the eye of the customer

§ Quality encompasses fitness, value, and other attributes

Copyright 2020, Dennis J. Frailey Software Testing Topics 37

Quality Attributes are
Seldom Directly Measurable

§ Fitness for intended use
§ Value to someone
§ Satisfaction of requirements

– Including implicit, unstated requirements
§ Maintainability
§ Reliability
§ Supportability
§ Testability
§ …

How can
these be
measured?

We need to find suitable ways to measure
these attributes.

Copyright 2020, Dennis J. Frailey Software Testing Topics 38

Some Attributes Are Measurable

Examples
– Water boils at 100o Centigrade

– My new application will complete at least 10 searches per
minute

– Code written in C takes less memory space than code written in
Python

The above statements may or may not be true, but they
can all be tested because they are all measurable.

Elicitinsights.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 39

Some Attributes are Not Measurable

Examples:
– Joe’s code is better than Jan’s code
– Lisp is a superior programming language to C#
– Object oriented design produces code that is more

maintainable

The above cannot be measured unless we define what
we mean by:

– Better than
– Superior
– Maintainable

In a measurable way!

Copyright 2020, Dennis J. Frailey Software Testing Topics 40

Surrogates

In order to measure an un-measurable attribute
– such as “quality” or “maintainability”

We may need to measure indirectly
– we measure something else that is associated with that attribute
– such as “defects” or “repair cost”

This alternative, measurable attribute is called a
surrogate.

Copyright 2020, Dennis J. Frailey Software Testing Topics 41

Surrogates Are Not the Real Thing

A surrogate may or may not accurately reflect the
desired attribute

Examples:

– Defects are a common surrogate for quality

– But lack of defects may or may not reflect quality.
§ Lack of defects may reflect failure to do effective testing
§ Or failure of the customer to use the product

– Repair cost may or may not reflect maintainability of
the software
§ Perhaps “repair” included many changes to the software to

add new features
§ Or perhaps the maintenance staff are not competent

Copyright 2020, Dennis J. Frailey Software Testing Topics 42

There Are Systematic Ways to
Identify Surrogates

§ Decomposition Approaches
– Fixed models
– Individualized models

§ Standardized Approaches
– These enable comparisons of software

from different organizations
– But may not fit the desired quality

characteristics of some software

There is little consensus on how to measure quality
attributes, so most organizations define them in ways

that fit their specific customer needs.

Bvicam.ac.in

Copyright 2020, Dennis J. Frailey Software Testing Topics 43

Decomposition Approaches
Boehm Software Quality Model

The concept
here is to

decompose
quality

attributes or
factors into
subfactors
until you

find factors
that are

measurable.

Copyright 2020, Dennis J. Frailey Software Testing Topics 44

A Closer Look at the Boehm Model

General Utility

As-is Utility

Maintainability

Portability

Reliability

Efficiency

Human
Engineering

Testability

Understandability

Modifiability

Device Independence

Completeness

Accuracy

Consistency

Primary Uses
Quality
Factors

Measurable
Quality Criteria

Fenton’s
Terminology

Copyright 2020, Dennis J. Frailey Software Testing Topics 45

Comments on Boehm’s Model

§ This is a way to decompose what we mean by
“quality” until we have measurable attributes
(quality criteria)

§ These quality criteria are surrogates for quality
– There are many of them
– Some of them relate to multiple quality factors

Portability

Reliability Completeness

Quality
Factors

Measurable
Quality Criteria

Copyright 2020, Dennis J. Frailey Software Testing Topics 46

Decomposition Approaches
McCall Software Quality Model

As you can
see, it’s

possible to
establish a

lot of
criteria

related to
quality

Copyright 2020, Dennis J. Frailey Software Testing Topics 47

McCall Model – Quality Factors
and (Measurable) Criteria

As with the
Boehm model,
some criteria

relate to
multiple
quality
factors

Copyright 2020, Dennis J. Frailey Software Testing Topics 48

Do I Really Need to Measure
So Many Attributes?

§ The various models tend to be comprehensive
– But you may need to use only a portion of a model for your

specific situation
– Ultimately you need to measure only what will actually

be used and be useful

Copyright 2020, Dennis J. Frailey Software Testing Topics 49

Measures of Software Quality

Based on

Defects or Faults or Failures

Copyright 2020, Dennis J. Frailey Software Testing Topics 50

Quality = Lack of Defects
(or Lack of Faults or Lack of Failures)1

The advantage of this approach is that it is often easier to test
for defects or failures and easier to measure them

than many other measures of quality

– However this approach may not capture what quality means to
the end user
§ Ease of use
§ Speed
§ …

– And it may not reflect all that the developer considers important
§ Maintainability
§ Supportability
§ … 1 Defects and faults usually mean the

same thing – causes of failures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 51

Defect Density1

Defect Density =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑫𝒆𝒇𝒆𝒄𝒕𝒔

𝑺𝒊𝒛𝒆 𝒐𝒇 𝑺𝒐𝒇𝒕𝒘𝒂𝒓𝒆 𝑷𝒓𝒐𝒅𝒖𝒄𝒕

Variations:
– Failure Density (instead of defects)
– Number of Defects (this can be defined in different ways)

§ Known Defects
§ Total Defects (Known Defects + Latent Defects2)

– Size of Software Product (can be defined in different ways)
§ It depends on the definition of size

1 Sometimes called “defect rate”, although this is inaccurate
2 Latent defects are defects we have not yet discovered

Copyright 2020, Dennis J. Frailey Software Testing Topics 52

Defect Density Advantages

§ Easily measured, compared with other options

§ Gives a good, general idea of the overall quality of the
software

§ This measure has been used for over 50 years to
measure software, and overall the defect density has
correlated well with perceived quality of products

Copyright 2020, Dennis J. Frailey Software Testing Topics 53

Defect Density Drawbacks
(1 of 3)

§ People can’t always agree on what constitutes a
defect
– Failure in operation vs mistake in the code
– Post-release defects vs defects found during development
– Discovered vs latent defects

§ Severity of problems caused by defects may be hard
to assess
– Some software defects have no significant impact on

customer’s perception of quality
– Different customers use the software in different ways

Copyright 2020, Dennis J. Frailey Software Testing Topics 54

Example from IBM1

§ Approximately one out of three defects will only
cause a user failure once in 500 years.

§ A very small portion of defects (<2%) cause the
most important user failures

Number of defects may not be strongly
correlated to the frequency or severity

of end user failures.

1 See Adams in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics 55

Defect Density Drawbacks
(2 of 3)

§ Different measures of the
time scale

– Amount of time since
release of product

– Amount of time the product
is actually used

– Processing time actually
used by the product

Release Purchase Installation First
Use

Jan Feb Mar Apr May Jun Jul Aug

First
Failure

No
problems
with the

software?

Not yet.
But we only
use it once a

year.

Researchgate.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 56

Defect Density Drawbacks
(3 of 3)

§ Different measures of size
– This can make it hard to compare different projects or processes

or development methods or organizations

§ What is defect density telling us?
– The quality of our product?

or
– The effectiveness of our defect detection and correction process?

Copyright 2020, Dennis J. Frailey Software Testing Topics 57

Despite These Drawbacks, Defect
Density is Very Widely Used

Some metrics that incorporate defect density
– Cumulative defect density

§ During development or after delivery
– Total serious defects found
– Mean time to fix serious defects
– Defects found during design reviews per KLOC
– Code inspection or peer review defects found per KLOC
– System test errors found per KLOC
– Customer-discovered problems per KLOC or per product

Copyright 2020, Dennis J. Frailey Software Testing Topics 58

Usability
Hard to Test For & Hard to Measure

Commonly used concepts of usability:
– User Friendliness
– Ease of use

Formal Definition:
Usability is the degree to which a system can

be used by specified users to achieve
specified goals with effectiveness, efficiency
and satisfaction in a specified context of use.

ISO/IEC 25010 (2011)

This is a very complex concept that is hard to
measure, but important to most end users

Copyright 2020, Dennis J. Frailey Software Testing Topics 59

Three Categories of Usability1

§ Effectiveness
– Can users complete the tasks correctly?

– Example: Effectiveness =
𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒚 ∗𝑸𝒖𝒂𝒍𝒊𝒕𝒚

𝟏𝟎𝟎
§ Efficiency

– Time required to complete the tasks

– Example: Efficiency =
𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝒏𝒆𝒔𝒔
𝑻𝒂𝒔𝒌 𝑻𝒊𝒎𝒆

§ Satisfaction
– Degree to which the end user likes the software

ØThis is a very subjective measure

1 See Fenton, section 10.3 for further details

Copyright 2020, Dennis J. Frailey Software Testing Topics 60

Internal Attributes Generally Viewed as
Related to Usability

These are more readily measured and
can be measured before the software is released

§ Good use of menus

§ Good use of graphics

§ Good help functions

§ Consistent interfaces

§ Well-organized reference manuals and help files

Use of these to predict usability is not recommended.

Researchers have been
unsuccessful in relating these
to effectiveness, efficiency or

customer satisfaction.

Copyright 2020, Dennis J. Frailey Software Testing Topics 61

Testability
A product is testable if:

– It can be tested in a reasonable way (readily testable)

– The tests are well defined, comprehensive, and not overly redundant

– Each test can be directly traced to and from:
§ product requirements,
§ derived requirements resulting from design decisions, or
§ design or coding elements calling for specific testing

– Each test failure can be directly traced to:
§ a requirement that is not being met, or
§ A design element that was not properly implemented, or
§ A portion of the code that has a programming error

Good testing starts with testable
requirements and designs.

Copyright 2020, Dennis J. Frailey Software Testing Topics 62

Testing is unsuitable when ...

§ It would destroy the product

§ It is too dangerous

§ It is too costly

§ It cannot reasonably be expected to provide
confidence that requirements are satisfied

§ It cannot be done

Copyright 2020, Dennis J. Frailey Software Testing Topics 63

Evaluation Techniques
(other than testing)

§ Examination
– For example, reading designs or code or other

documents to check for errors

§ Demonstration
– e.g. flying an airplane to show that it can fly
– e.g. running a program to show that it works

§ Other techniques (examples)
– providing a formal proof that a program is correct
– measuring something
– showing through statistical analysis that the

probability of a defect is below a threshold

Copyright 2020, Dennis J. Frailey Software Testing Topics 64

Reasons why Requirements/Designs
May be Hard to Test

§ Requirements may not be well understood

§ Requirements may not be well documented

§ What seems obvious to the customer or the system
designer may not seem clear or obvious to the software
developer or tester
– Different kinds of knowledge

– Unstated assumptions

§ The customer and the software developer may not agree on
what constitutes an acceptable test

§ Changes made during software development may not be
communicated to the software team

Copyright 2020, Dennis J. Frailey Software Testing Topics 65

Suggestions (slide 1 of 3)

§ A requirement or design feature is not complete until
you have reached agreement on how it is to be tested
– For each requirement, reach agreement between the software

team and the customer or system engineer on how the
requirement is to be tested

– For each design feature, reach agreement between the software
designer and the software test team on how the design feature is
to be tested

www.cigniti.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 66

Suggestions (slide 2 of 3)

§ Control changes to requirements and design
– Don’t allow a requirements or design change without a clear

understanding of the effect of the change on the software cost,
schedule and technical development

– For each change to requirements or design, indicate how the
corresponding tests must be changed.

Researchgate.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 67

Suggestions (slide 3 of 3)

§ Keep track of which tests correspond to which
requirements or design elements (traceability)

Ideal
Requirement 1 Test 1
Requirement 2 Test 2
Requirement 3 Test 3

Acceptable
Requirement 1
Requirement 2 Test A
Requirement 3

Copyright 2020, Dennis J. Frailey Software Testing Topics 68

Acceptable
Test 1

Requirement A Test 2
Test 3

Undesirable
Requirement 1 Test A
Requirement 2 Test B
Requirement 3 Test C

Other Traceability Options

Copyright 2020, Dennis J. Frailey Software Testing Topics 69

Reasons Why Code May Be Difficult to Test

§ Code is not well structured
– Needlessly complex
– Poorly organized

§ Code elements do not trace directly to requirements or
design elements
– So when the code causes a failure, it is hard to determine whether

the problem is with the code or the design or the requirement

§ Code is not well documented or does not follow coding
conventions
– Hard to understand
– Error prone

We will address this in
parts 4 and 5

Copyright 2020, Dennis J. Frailey Software Testing Topics 70

Seeding and Tagging
A simple and effective way to

assess Testing Progress

Copyright 2020, Dennis J. Frailey Software Testing Topics 71

Seeding and Tagging

Purpose: To help you estimate how many undetected
errors (defects) are in your code

When to do this: During test planning and during the
testing process

Suppose: You have been testing your code and have
discovered D1 errors (defects).

Question: How many errors are left?

Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of
them your test process has found.

Copyright 2020, Dennis J. Frailey Software Testing Topics 72

Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during
the normal testing process

Copyright 2020, Dennis J. Frailey Software Testing Topics 73

Seeding and Tagging Details

§ Introduce a given number of extra errors into the
software -- say E of them

§ Run standard tests, detecting D2 of them

§ Compute D2/E = % of errors detected

§ Suppose D1 = number of genuine errors
already detected

§ Then you assume the total number of errors in the
software is

D1*E/D2

Copyright 2020, Dennis J. Frailey Software Testing Topics 74

Example of Seeding and Tagging

§ 200 defects found so far

§ You have injected 20 extra defects

§ You have found 12 of these extra defects

§ Therefore, assume total defects =
200 * 20 / 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

By performing this analysis from time to time,
you can estimate your defect density and your

testing progress over time.

Copyright 2020, Dennis J. Frailey Software Testing Topics 75

Part 2

Some Basic Principles of
Measurement and Data Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics 76

Contents

§ Definitions

§ Scales

§ Basic Analysis Approaches

§ Statistical Distributions

§ Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 77

Measurement is ...

... the process by which numbers or symbols
are assigned to attributes of entities in
the real world in such a way so as to
describe them according to clearly defined
rules.
ØThe assignment of numbers must

preserve intuitive and empirical
observations about the attributes
and entities

Source: Fenton, page 5

Definition of Measurement

Copyright 2020, Dennis J. Frailey Software Testing Topics 78

Preservation of Attributes
Example

“House A is bigger than House B”

This is a meaningful statement only if the number
we assign to “size” preserves our intuitive notion
of houses and their sizes.

House A House B

Copyright 2020, Dennis J. Frailey Software Testing Topics 79

But Intuitions Vary

What do we really mean by “size”?

Before we can measure size, we must define a
model that reflects a specific viewpoint

– The model must specify an entity to be measured

and
– an attribute of that entity.

Ø I.e.,
§ what do you want to measure? and

§ what do you want to know about it?

– Examples (next two slides)

Copyright 2020, Dennis J. Frailey Software Testing Topics 80

Functionality Model for Size of a House

In this model, the size of a house is based on
how many people can comfortably live there

Ø The size of a house is measured by the number
of bedrooms and the number of bathrooms

Copyright 2020, Dennis J. Frailey Software Testing Topics 81

Cost Model for Size of a House

In this model, the size of a house is based on
how much it will cost to construct it

Ø The size of a house is measured by the square
feet of living space

Copyright 2020, Dennis J. Frailey Software Testing Topics 82

Storage Space Model for
Size of Software Used on a PC

In this model, the size of software is based on how
much disk space it occupies

Ø The size of software is measured by the number of
bytes of memory it requires when stored on a disk

https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSGaF3LbJOReKic-
6yZyOr9_cKS3Lr3gV0zzEX9rsMezUxHinFliw

Copyright 2020, Dennis J. Frailey Software Testing Topics 83

Cost Model for
Size of Software Used on a PC

In this model, the size of software is based on how
much it will cost to construct it

Ø The size of software is measured by the number of
user stories used to establish the requirements.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwikptj9kdfSAhWKz4MKHfSNAfEQjRwIBw&url=https
%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUser_story&bvm=bv.149397726,d.cGc&psig=AFQjCNFdWIGXMDrGnfsbmrgiNdbLFEGADg&ust=1489620239765305

Copyright 2020, Dennis J. Frailey Software Testing Topics 84

Contents

§ Definitions

§ Scales

§ Basic Analysis Approaches

§ Statistical Distributions

§ Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 85

Measures Allow Us to Categorize and
Analyze the Attributes of Entities

But measures do not have to be numbers.
Example: Road Signs – shape and color are

used to categorize road signs

Warning

Information

Copyright 2020, Dennis J. Frailey Software Testing Topics 86

Definitions: Scales of Measure
A scale of measure

or
A level of measurement

or simply
A scale, is:

– A collection of symbols or numbers used to
classify attributes of entities or variables

– A classification system for describing the nature
of information

Ø There are various scales in use and the
properties of those scales are important
– The properties help determine which forms of

analysis are appropriate

Copyright 2020, Dennis J. Frailey Software Testing Topics 87

Classification of Scales
The classification system most widely adopted in

data analysis and statistics was originated by
Stanley Smith Stevens1 for use in psychological

research.

Ø This classification includes four levels of scales:
– Nominal

– Ordinal

– Interval

– Ratio

1Stevens, S. S. (7 June 1946). "On the Theory of Scales of Measurement". Science. 103 (2684): 677–680.

Researchers have debated
Stevens’ classification and

proposed other classification
systems, but no other scale

classification has achieved such
widespread use.

www.storemypic.com

www.fixquote.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 88

Stevens’ Types of Scales

Scale

A
n

al
yt

ic
al

ly
 U

se
fu

l
C

h
ar

ac
te

ri
st

ic
s

Nominal RatioIntervalOrdinal

Copyright 2020, Dennis J. Frailey Software Testing Topics 89

Scales Help Us Understand What Kinds
of Analysis are Meaningful

Color
No Natural Order

Height
Natural Order

Copyright 2020, Dennis J. Frailey Software Testing Topics 90

Nominal Scales

Scale

C
h

ar
ac

te
ri

st
ic

s

Nominal RatioIntervalOrdinal

Copyright 2020, Dennis J. Frailey Software Testing Topics 91

Nominal: a scale that places entities in
categories – but without any ordering

Example: Color
– marbles are

§ Blue, or
§ Black, or
§ Red, or
§ Yellow

Software Example: Defect Origin
- defects discovered while testing are

§ Requirements related, or
§ Design related, or
§ Programming related, or
§ Testing related. www.xbsoftware.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 92

Nominal Scales - Characteristics

§ We can categorize the entities
– Often in terms of specific qualities such

as color or shape

§ We can count the size or frequency
of each category

§ We can determine the most
frequent category (the mode)

§ But there is no natural order or
ranking to the categories

§ And there’s no such thing as the
median or average

Copyright 2020, Dennis J. Frailey Software Testing Topics 93

Other Examples of Nominal Scales

§ Gender

§ Nationality

§ Ethnicity

§ Language

§ Genre

§ Style
§ Biological Species

§ Form or Shape

§ Parts of Speech (in grammar)

We can use numbers to classify
attributes or variables in a nominal scale

But they do not have any numerical
values or relationships other than

equality or inequality

Copyright 2020, Dennis J. Frailey Software Testing Topics 94

Example:
Suppose We Have Three Animal Species

1. Tigers

2. Elephants

3. Horses

Mynicetime23.wordpress.com

True-wildlife.blogspot.com

kidssearch.com

Just because we have numbered
them in a particular order does

not mean anything.

Tigers are not more
important because they

are listed first

Horses are not 3 times as
valuable because we gave

them the number three

Copyright 2020, Dennis J. Frailey Software Testing Topics 95

Ordinal Scales

Scale

C
h

ar
ac

te
ri

st
ic

s

Nominal RatioIntervalOrdinal

Copyright 2020, Dennis J. Frailey Software Testing Topics 96

Ordinal: there is a ranking or ordering

§ Example: military rank

§ General

§ Colonel

§ Lieutenant

§ Sergeant

§ SW Example: defect severity

§ minor

§ significant

§ major

§ Example: size of dogs

https://cdn.shopify.com/s/files/1/0118/8082/files/dog_sizes_antler.png?373

Copyright 2020, Dennis J. Frailey Software Testing Topics 97

Ordinal Scales - Characteristics

§ You can place them in order
(sorting)

§ You can determine the
median (middle) item in a
list

Ø But you cannot compute an
average

Ø And there is no mathematical relationship
between categories
Ø (sergeant is not “twice as” high as “private”)

Copyright 2020, Dennis J. Frailey Software Testing Topics 98

Ordinal Scales – Other Examples

§ Rank in a contest or race

§ Degree of health
– Critical Serious Fair Good Excellent

§ Comparative restaurant ratings
– Excellent Very Good Good Poor Terrible

The degree of distance between successive
categories is not defined

You can determine the middle item (median) but
not the “average” (mean)

Copyright 2020, Dennis J. Frailey Software Testing Topics 99

Interval Scales

Scale

C
h

ar
ac

te
ri

st
ic

s

Nominal RatioIntervalOrdinal

Copyright 2020, Dennis J. Frailey Software Testing Topics 100

Interval: there is a fixed distance between
consecutive members of a sequence

– Example: Dates
§ 1/1/2012, 1/2/2012, …

– Example: Temperature in Farenheit
§ 10 degrees, 30 degrees, etc.

Given any two dates, we
can count the distance
between them in days

Given any two temperatures, we can count the
distance between them in degrees

Copyright 2020, Dennis J. Frailey Software Testing Topics 101

Interval Scales - Characteristics

§ There is an ordering

§ You can quantify the
distance (degree of
difference) between
any two values

§ You can add or
subtract values

Ø But you cannot
multiply or compute a
ratio
– See next slide

Given any two dates, we
can count the distance
between them in days

30o plus 10o = 40o

3/5/2020 – 3/1/2020 = 4 days

You can tell if one is
larger than another

Copyright 2020, Dennis J. Frailey Software Testing Topics 102

With Interval Scales We
Cannot Multiply or Divide

– Example: Dates
§ 1/1/2012, 1/5/2014, 1/25/2020, …

It does not make sense to say one date is “five
times” another date

Mathematically, this means there is no “true 0”
value -- we can place the “0” value anywhere in

the sequence

Copyright 2020, Dennis J. Frailey Software Testing Topics 103

http://thestoryofouruniverse.com/wp-content/uploads/Time-scale-2a.jpg

Interval Scale Example - Time

§ We lack a precise measure of when time began

§ So we measure time using an arbitrary “0” point

– Years are measured since an arbitrary date
§ Microsoft Excel dates are measured in days since 12/31/1899

– Scientists often measure time in years backwards from the
present

Copyright 2020, Dennis J. Frailey Software Testing Topics 104

Other Examples of Interval Scales

§ Temperature (on Centigrade or Fahrenheit scale)

§ Map coordinates (longitude or latitude)

§ Map direction (degrees from North)

Note: a common error is to assume you can
compute ratios for items in an interval scale.

See next slide for more information on this.

Copyright 2020, Dennis J. Frailey Software Testing Topics 105

Computing Ratios for Interval Scales

§ The ratio between two items on an interval scale
cannot be determined

§ But you can determine the ratios between differences

Example: the parent’s age could be twice
that of the child’s:

Each age is the difference between the
current date and the date of birth

Copyright 2020, Dennis J. Frailey Software Testing Topics 106

Ratio Scales

Scale

C
h

ar
ac

te
ri

st
ic

s

Nominal RatioIntervalOrdinal

Copyright 2020, Dennis J. Frailey Software Testing Topics 107

Ratio: There is a fixed distance between
consecutive sequence members, AND

multiplication is meaningful

This means that ratios are meaningful

§ Examples:
– Size

– Weight

– Length

– Duration

– Electric Charge

Note that there is a “true 0” value

60 mph is
twice as

fast as 30
mph

http://www.sixsigmatrainingconsulting.com/wp-content/uploads/2010/10/ratio-scale.bmp

Copyright 2020, Dennis J. Frailey Software Testing Topics 108

With a Ratio Scale We Can Compute an
Average or Mean

Ø Because we can multiply and divide

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiXhcuLzNTSAhVM34MKHQ9UCNYQjRwIBw&url=http%3A%2F%2Fnewsro
om.aaa.com%2F2016%2F08%2Faverage-gas-prices-holding-steady-begin-august%2F&psig=AFQjCNFYj2pTtSvClpmXIAwWf_1pFq-aeg&ust=1489532668700886

http://homevestors.com/wp-content/uploads/Average-Home-Size.png
https://www.uschamber.com/sites/default/files/styles/article_gallery/
public/ei_electricityratesmap4.5.16.jpg?itok=DDSLVlpu

Copyright 2020, Dennis J. Frailey Software Testing Topics 109

One Other Scale is Often Used in Data
Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics 110

Absolute Scales

§ Absolute: all mathematical operations are meaningful

– Square root

– Exponentiation

– Etc.

§ In some definitions, only positive values are permitted

– (i.e., there is an absolute 0, marking the starting point of the
scale)

Copyright 2020, Dennis J. Frailey Software Testing Topics 111

Test Yourself – What Scale is Clothing Size?

https://rules.ssw.com.au/PublishingImages/size-stories-bad-example.jpg

Copyright 2020, Dennis J. Frailey Software Testing Topics 112

Scales - Summary

Characteristics Nominal Ordinal Interval Ratio

Categorization,
Classification

þ þ þ þ

Mode (most frequent) þ þ þ þ

Order, Comparison, Sorting þ þ þ

Median (middle) þ þ þ

Fixed Distance, Add,
Subtract

þ þ

Ratio of differences þ þ

Multiply and Divide, Ratio þ

True 0 þ

Mean þ

Copyright 2020, Dennis J. Frailey Software Testing Topics 113

Misuse of Scales

Copyright 2020, Dennis J. Frailey Software Testing Topics 114

Example - Assigning a Scale to
Test Failures

{Blue, Green, Yellow, Red}

This is an ordinal scale
– It provides a ranking but not ratios

– There is not a fixed difference between values
§ The difference between “red” and “yellow” is not

comparable to the difference between “yellow” and
“green”

– It makes no sense to add, subtract, multiply or
divide the values.

Fewest Most

Copyright 2020, Dennis J. Frailey Software Testing Topics 115

But Suppose we Replace with a
Numeric Scale

4 = Blue 3 = Green
2 = Yellow 1 = Red

We are tempted to make meaningless or
misleading statements like these:

“The average test error improved from 2.2 to 3.1”

“The average test error improved by 47%”

Copyright 2020, Dennis J. Frailey Software Testing Topics 116

Another Example – Customer Survey

The average response from our customers is “good”
[on a scale of very poor, poor, good, very good]

–But the scale is not a ratio scale (or even an interval
scale), so what does “average” mean?

–Does “half very good and half poor” mean “good”?

http://www.brecoflex.com/wp-content/uploads/2016/10/survey.jpg

Copyright 2020, Dennis J. Frailey Software Testing Topics 117

Assigning Numbers Can be Misleading

Scale Yesterday Today
Centigrade 0 18
Fahrenheit 32 64

Is it twice as hot today as it was yesterday?

The properties of the number system
may not necessarily apply to the

attribute being measured

Consider the attribute “temperature”:

Copyright 2020, Dennis J. Frailey Software Testing Topics 118

Twice as ...

“Twice as” is a meaningful concept for numbers

It is not necessarily a meaningful concept for
temperature

Ø Because centigrade and Fahrenheit are interval scales, not
ratio scales

The error we make is assuming that
properties of the number system apply

to the attribute being measured

Footnote: “twice as” is a meaningful concept for temperature measured on the Kelvin
scale because the volume of a gas is proportional to its temperature on that scale.

Copyright 2020, Dennis J. Frailey Software Testing Topics 119

A Very Common Example:
Student Grade Point Average

Student 1

§ B – 3 points
§ B – 3 points
§ B – 3 points
§ B – 3 points
§ B – 3 points

§ Average: 15/5 =
3.0

Student 2

§ A – 4 Points
§ A – 4 Points
§ B – 3 Points
§ B – 3 Points
§ D – 1 Point

§ Average: 15/5 =
3.0

Are These Students Really Equal?

Grade Point
Average is an
example of a
Descriptive

Statistic.
Not technically

accurate, but does
give a useful
indication.

Copyright 2020, Dennis J. Frailey Software Testing Topics 120

Contents

§ Definitions

§ Scales

§ Basic Analysis Approaches

§ Statistical Distributions

§ Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 121

What Do We Have, After Data Collection?

We have a collection of data values,
known as a dataset or a batch.

These values are measurements

of

attributes

of

entities

Copyright 2020, Dennis J. Frailey Software Testing Topics 122

What Do We Want to Know?

Characteristics of attributes /
entities of the same type

Relationships between
attributes / entities of the same
or different types

Examples:
– Which method is faster?
– How many defects?
– Do effective peer reviews reduce

customer complaints?

Copyright 2020, Dennis J. Frailey Software Testing Topics 123

The First Step is to Organize the Data for
Analysis

First, we refine & compress the data
– Eliminate duplicates, errors, etc.
– Compute totals, sort data, etc.
– Perform appropriate data compression

Then, we compute various derived measures
(computations)

Base
Measure

Base
Measure

Base
Measure

Base
Measure

Base
Measure

Derived
Measure

Derived
Measure

Derived
Measure

Thenounproject.com

Copyright 2020, Dennis J. Frailey Software Testing Topics 124

Examples of Derived Measures

Units
Produced

Head-
count

Lines
of Code $ SpentMonths

Units Per Month LOC per
Staff Month $ per Line of Code

Exactly what derived measures we want is
determined by our metric selection process

(based on our information needs).

Copyright 2020, Dennis J. Frailey Software Testing Topics 125

The Next Step is Analysis

We can look at the data
as we have it

We may want to sort the data
or do other simple processing

to make sense of it

One option is to simply look at the data:

Copyright 2020, Dennis J. Frailey Software Testing Topics 126

Another Option is to Graph the Data

Often, a
graph or

chart makes
it very easy
to see what
the data are
telling us.

Copyright 2020, Dennis J. Frailey Software Testing Topics 127

But Often There is Too Much Data or the
Relationships Are Not So Easy to See

Statistical methods are
often helpful in

situations like these

Copyright 2020, Dennis J. Frailey Software Testing Topics 128

Contents

§ Definitions

§ Scales

§ Basic Analysis Approaches

§ Statistical Distributions

§ Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 129

Statistical Techniques Help Us Deal
with Many Situations

Statistical techniques can often be used to describe
the attributes and relationships

Examples:
– High and Low values (and how often each occurs)
– Average (Mean), Median and Mode
– Mathematical relationships between values

§ For example, if you double the number of programmers, how
much do you reduce the schedule?

– Patterns of values
§ For example, do most defects result from errors in

requirements, errors in design, or errors in coding?
– Overall distribution of values

Copyright 2020, Dennis J. Frailey Software Testing Topics 130

Distributions

Suppose you evaluate 30 students on their programming
ability and come up with the following values:

Overall
Ability

Total Percent

Very Poor 3 10.0%

Poor 6 20.0%

Average 12 40.0%

Good 7 23.3%

Very Good 2 6.6%

Total 30 100%

Since all
students are

accounted for,
this is called a
distribution of
student ability

values.

Copyright 2020, Dennis J. Frailey Software Testing Topics 131

The Distribution as a Bar Graph

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%

Very
Poor

Poor Average Good Very
Good

Student Programming Ability

Percent of Total

Copyright 2020, Dennis J. Frailey Software Testing Topics 132

The Distribution as a Histogram

A histogram
looks like a
bar chart
with no
spaces

between the
bars.

Histograms
are often

used to show
distributions.

Copyright 2020, Dennis J. Frailey Software Testing Topics 133

Probability Distributions

Suppose one student is selected at random from the
group of 30.

What is the probability that the student will have
any given ability level?

Overall
Ability

Total Probability

Very Poor 3 .1
Poor 6 .2
Average 12 .4
Good 7 .233
Very Good 2 .066

Total 30 1.0

If you represent the
percentage as a

probability, this is
called a probability

distribution of
student ability

values.

Copyright 2020, Dennis J. Frailey Software Testing Topics 134

Requirements for a
Valid Probability Distribution

A probability distribution is the assignment of
probability values to each of the possible outcomes

§ The probabilities must be numbers between 0 and 1

§ The probabilities must add up to 1

The probability distribution represents the likelihood
that a randomly chosen value will have a given
outcome.

Copyright 2020, Dennis J. Frailey Software Testing Topics 135

Calculating Probability of Other Situations

Suppose you want to know if a randomly chosen
student will be at least average in ability.

Overall
Ability

Total Probability

Very Poor 3 .10
Poor 6 .20
Average 12 .40
Good 7 .233
Very Good 2 .066

Total 30 1.0

These are average
or higher

Add up the probabilities:
.40 + .233 + .066 = .70

The probability of a student
being at least average is .70

Copyright 2020, Dennis J. Frailey Software Testing Topics 136

Uniform Distribution

§ If all events are equally likely, this is called a
uniform distribution.

§ If there are N options, the probability of any of
them is 1/N

0

0.05

0.1

0.15

0.2

0.25

0.3

Option
1

Option
2

Option
3

Option
4

Uniform Probability
Distribution

Probability

Copyright 2020, Dennis J. Frailey Software Testing Topics 137

Suppose There are Many Possible Values

Example: The ages of the software development staff
– Total staff size is 200 people
– Range of ages is from 18 to 72

There are 55 possible values
Age Total Probability

18 1 .005

19 0 .000

20 2 .010

21 0 .000

22 1 .005
… … …

Total 200 1.0

There would be a
very long list

and
very small probabilities

for most cases.

This might be very
cumbersome to analyze.

Copyright 2020, Dennis J. Frailey Software Testing Topics 138

Graph of Probability Distribution –
Line Chart

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Age of Software Development Staff
(Probability Distribution)

Probability

Copyright 2020, Dennis J. Frailey Software Testing Topics 139

Graph of Probability Distribution –
Bar Chart

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Age of Software Development Staff
(Probability Distribution)

Probability

Copyright 2020, Dennis J. Frailey Software Testing Topics 140

What If There Are an Infinite Number
(or a very large number) of

Possible Values
Examples:

– Number of lines of code in each software product.
§ Range: 11 to 128,045

In this case, it could be meaningless to have a
separate probability for each possible value.

Solution 1: Discretization
– Divide the possibilities into discrete ranges that

make sense for your purposes

Solution 2: Continuous Function
– Represent the values with a continuous function

Copyright 2020, Dennis J. Frailey Software Testing Topics 141

Discretization

Divide the list into discrete intervals

Age Range Total Probability
20 or less 1 .005

21-30 39 .195
31-40 62 .310
41-50 45 .225
51-60 28 .140
61-70 22 .110

Over 70 3 .015

Total 200 1.0

For many purposes,
these categories

would be useful and
having only 7

categories makes
analysis a lot easier

than having 55 of
them.

Copyright 2020, Dennis J. Frailey Software Testing Topics 142

Bar Graph of Discretized Distribution
Data for Programmer Age

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

<20 21-30 31-40 41-50 51-60 61-70 > 70

Probability for Each Age Range

Note that this discretized graph tells us things that were harder to see before.

Copyright 2020, Dennis J. Frailey Software Testing Topics 143

Same Graph Using a Line Chart

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

<20 21-30 31-40 41-50 51-60 61-70 > 70

Probability for Each Age Range

What if there were a mathematical
function that produced a curve

similar to this?

Copyright 2020, Dennis J. Frailey Software Testing Topics 144

Use of a
Continuous Distribution Function

For very large numbers (or infinite possibilities), it is
sometimes convenient to use a continuous function

whose shape approximates the distribution of the data.

The area under the curve is equal to 1.0 – the sum of
all probabilities.

Copyright 2020, Dennis J. Frailey Software Testing Topics 145

Advantages and Drawbacks of
Continuous Functions

Advantages
–Many mathematical and statistical analyses can be

performed on the functions
§ You can often make good predictions
§ Or combine multiple independent variables and determine their

relationships

Drawbacks
–You cannot draw conclusions about individual values
§ For example: what is the probability that a programmer is exactly

34.25 years old?
–You must draw conclusions about ranges of values
§ For example: what is the probability that a programmer is between

34 and 35 years old?

Copyright 2020, Dennis J. Frailey Software Testing Topics 146

Normal Distribution (Bell Curve)

This is a widely used continuous distribution
because many phenomena fit this shape.

𝝁 is the mean or
average value

Copyright 2020, Dennis J. Frailey Software Testing Topics 147

Normal Distribution Variations

By Inductiveload - self-made, Mathematica, Inkscape, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3817954

Copyright 2020, Dennis J. Frailey Software Testing Topics 148

Example
Bell Curve Approximates Data

Copyright 2020, Dennis J. Frailey Software Testing Topics 149

Real Data With Approximately Normal
Distribution

Copyright 2020, Dennis J. Frailey Software Testing Topics 150

Uses of Normal Distribution (1 of 2)

If the data are distributed in a pattern that is similar to
normal distribution, we can often reach conclusions about
the data from known facts about the normal distribution

– This happens often with many natural phenomena

– For example: height

Copyright 2020, Dennis J. Frailey Software Testing Topics 151

Uses of Normal Distribution (2 of 2)

Many statistical concepts are easy to explain using
the normal distribution

– Because it has many very convenient statistical and
mathematical properties

Copyright 2020, Dennis J. Frailey Software Testing Topics 152

Normal Distribution Variants
The Normal Distribution is a
type of Gaussian Distribution

There are many ways to modify a
Gaussian distribution to fit specific

datasets

The Gaussian Distribution is a
type of Elliptical Distribution

For some situations, an Elliptical
distribution will fit the data

Various Gaussian
Distributions

Various Elliptical
Distributions

Copyright 2020, Dennis J. Frailey Software Testing Topics 153

Other Examples of
Continuous Distributions

For many phenomena
there are continuous

distributions that
approximate the actual

distributions.

You find out using curve
fitting techniques

Copyright 2020, Dennis J. Frailey Software Testing Topics 154

Many Natural Phenomena Fit the Chi
Square Distribution (C2 or �2)

C2 Distribution Variations on C2

Unlike the normal distribution, C2 is
constrained to have no negative values.

Copyright 2020, Dennis J. Frailey Software Testing Topics 155

Contents

§ Definitions

§ Scales

§ Basic Analysis Approaches

§ Statistical Distributions

§ Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 156

Central Tendency Measures

A Measure of Central Tendency
– is a

single value
– that

attempts to describe a set of data
– by

identifying the central position within that set of data.

These are also sometimes called
summary statistics

or
measures of central location

Slideshare.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 157

Mode, Median and Mean
(Central Tendency Measures)

§ Mode: The value that appears most often

§ Median: The value of the middle item

§ Mean (� or �): The average of all values

Given these values: 1,2,2,3,4,7,9
Term Description Example Result
Mean Sum /

Total Number of Values
(1+2+2+3+4+7+9)/7 4

Median Middle value 1,2,2,3,4,7,9 3
Mode Most Frequent Value 1,2,2,3,4,7,9 2

Source: Wikipedia

Copyright 2020, Dennis J. Frailey Software Testing Topics 158

Mode, Median and Mean for Various
Distributions

Copyright 2020, Dennis J. Frailey Software Testing Topics 159

Example of Skewed Distribution

Copyright 2020, Dennis J. Frailey Software Testing Topics 160

Notes about Mode (1 of 2)

1. There can be no mode or more than one mode
– no mode - Bimodal - Multimodal

Ø When there is a lot of data and there are several
local maximum points, each is considered a mode

vi.e., any relative high point or peak in the data may be
considered a mode.

0

0.1

0.2

0.3

Copyright 2020, Dennis J. Frailey Software Testing Topics 161

Notes about Mode (2 of 2)

2. The mode can be determined for data using
nominal, ordinal, interval, ratio and absolute scales

Ø Mean & median require higher scales

Mode

Median
Mean

Copyright 2020, Dennis J. Frailey Software Testing Topics 162

Notes about
Mode, Median and Mean

For normally distributed data, these three are equal

For other distributions they may not be.
Ø So one way to tell if the normal distribution is a possible fit to

your data is to compute the mode, median and mean and see
if they are the same.

Copyright 2020, Dennis J. Frailey Software Testing Topics 163

Measures of Dispersion

§ A Measure of Dispersion
– is a

§ single value
– that

§ attempts to describe a set of data
– by

§ identifying the spread of values within that set of data.

The most common measures of dispersion are:
Range

Variance, and
Standard deviation

Ghhomeworktcif.gloriajohnson.us

Copyright 2020, Dennis J. Frailey Software Testing Topics 164

The Range

§ The Range is the distance between the largest and the
smallest values in a set of data
– (Requires an interval scale)

Web.cs.wpi.edu

Copyright 2020, Dennis J. Frailey Software Testing Topics 165

The Variance
(requires a ratio scale)

In statistics, particularly when looking at probability
distributions,

the Variance is a measure of how far a set of
numbers is spread out.

Ø This is also known as the dispersion or variation.

Variance = 0
means all the numbers are the same

Variance = a small number
means all the numbers are close to each other

Variance = a large number
Means the numbers are widely dispersed

Copyright 2020, Dennis J. Frailey Software Testing Topics 166

The Standard Deviation (�)
(square root of the variance)

The Standard Deviation (denoted by the symbol 𝝈 or
“sigma”) is another measure used to represent the

amount of variation or dispersion of a set of data values

𝝁 is the mean or
average value

Copyright 2020, Dennis J. Frailey Software Testing Topics 167

Standard Deviation & Variance

§ If the standard deviation or variance is small, it means
the data values are very close together (blue curve)

§ If the standard deviation or variance is large, it means
the data values are dispersed (red curve)

Copyright 2020, Dennis J. Frailey Software Testing Topics 168

Suppose you have an ordered collection of numbers, X, on
a ratio scale

And suppose x is a random member of the collection

𝝁 = mean or average value

xi = ith possible value

pi = probability that x has the value xi

Variance =

𝝈 = 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆

Calculations for a Discrete, Random Variable x

There are many uses for these
calculations when doing statistical

analysis of measured data

Copyright 2020, Dennis J. Frailey Software Testing Topics 169

Alternative Calculations for Variance

Suppose you have an ordered collection of numbers, X,
on a ratio scale

And suppose N is the number of members (the size) of
the collection

𝝁 = mean or average value

xi = ith value
Variance =

N

𝝈 = 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆

For some data sets, this formula for variance
may experience overflow, underflow or other
calculation instabilities due to the sums of

squares required. See “Algorithms for
calculating variance” on Wikipedia.

Copyright 2020, Dennis J. Frailey Software Testing Topics 170

Any Questions?

Copyright 2020, Dennis J. Frailey Software Testing Topics 171

End of
Lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 172

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN
978-0769551661. Available in PDF format (free) at www.swebok.org.

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.
Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning
Quality into Goods and Services. Free Press, 1992. ISBN-13: 978-
0029166833.

Project Management Institute, SWX – The Software Extension to the
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.

Weinberg, Gerald M., Quality Software Management, Volume 1, Systems
Thinking, Dorset House, New York, 1992. ISBN: 0-932633-22-6.

Copyright 2020, Dennis J. Frailey Software Testing Topics 173

References
Part 2

Devore, Jay, N. Farnum, and J. Doi, Applied Statistics for
Engineers and Scientists, 3nd Edition, Thompson, 2013. ISBN
978-1133111368.

Fenton, Norman and James Bieman, Software Metrics: A
Rigorous and Practical Approach, Third Edition, Chapman and
Hall, 2014. ISBN 978-1439838228.

Stevens, S. S., "On the Theory of Scales of Measurement".
Science (7 June 1946). 103 (2684): 677–680.

