UT D
UT Dallas

Software Quality and Software Testing

Part 1 — The Big Picture (How Quality
Relates to Testing)
Part 2 - Fundamental Concepts of
Measurement and Data Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics

ut D Dennis J. Frailey

Retired Principal Fellow - Raytheon Company

PhD Purdue, 1971, Computer Science
Assistant Professor, SMU, 1970-75
Associate Professor, SMU, 1975-77

(various titles), Texas Instruments, 1974-1997;
Raytheon Co. 1997-2010
Adjunct Associate Professor, UT Austin, 1981-86
Adjunct Professor, SMU, 1987-2017
Adjunct Professor, UT Arlington, 2014-present

Areas of specialty: software development
process, software project management,
software quality engineering, software metrics,
compiler design, operating system design, real-
time system design, computer architecture

Copyright 2020, Dennis J. Frailey Software Testing Topics

A Recommended Book on Measurement

Some of the material covered SOftwa e

Metrics

A Rigoraus and

today is taken from this book.

Although not a book on testing, Precties! Aparosch
it is a very good book on B coi1i0n
measurement and addresses

several aspects of testing. B e
Tar reEen

Jirsei S

- W e

Software Metrics — A Rigorous and Practical Approach
By Norman Fenton and James Bieman

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D More Recommended References

SWX - The Software Extension to the Project
Management Body of Knowledge, available from PMI
() and the IEEE Computer Society
()
— This is a general reference that may be important if you want
to apply some of today’s techniques in project management.

SWEBOK - The Guide to the Software Engineering Body

of Knowledge, available from the IEEE Computer Society
and also at

— This is another general reference that gives an overall picture

of software engineering knowledge and summarizes topics that
any software engineer should know about.

Copyright 2020, Dennis J. Frailey Software Testing Topics

http://www.pmi.com/
http://www.computer.org/
http://www.swebok.org/

UT D

Part 1

The Big Picture — How Quality
Relates to Testing and Other
Aspects of Software Engineering

Copyright 2020, Dennis J. Frailey Software Testing Topics

ut b Test and Evaluation

Evaluation: Appraising a product through one of the
following:

— Examination, analysis, demonstration
— Testing
— or other means
Testing: Exercising a system to improve confidence

that it satisfies requirements or to identify
variations between desired and actual behavior.

[“Evaluation” is the broader term. J

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D

But What Are We Appraising?
What is "Desired Behavior”?

Satisfies requirements
Works correctly

Does what I want it to do
Does no harm

Reliable - I can depend on it
Easy to use

Portable

Easy to update and maintain
Easy to test

Runs efficiently / fast
Consistent

Copyright 2020, Dennis J. Frailey

e

Can we test for
— these
characteristics?

Can we
measure them?

—

Software Testing Topics

Ut D But What Are We Appraising?
What is "Desired Behavior”?

e

= Satisfies requirements

= Works correctly

= Does what I want it to do

= Does no harm

= Reliable - I can depend on it

These are all
= Easy to use

— characteristics of

* Portable Software Quality
= Easy to update and maintain

= Easy to t_e_st I.e., testing is one
= Runs efficiently / fast way to assess

= Consistent software quality.

u Ty —

Copyright 2020, Dennis J. Frailey Software Testing Topics 8

™ SWEBOK'
V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Pierre Bourque
Richard E. (Dick) Fairley

Downloadable at: < IEEE
www_swebok_org IEEE@)computer society

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D SWEBOK Facts

= 3 Editions have been produced since 1998
= 2 Editors: Pierre Bourque and Richard Fairley
= 8 Contributing and Co-Editors

= 15 Knowledge Areas, each with its own Editors
— Each aligned with related ISO and IEEE standards

= 9-person Change Control Board

= Over 300 reviewers (chosen due to their expertise in
various aspects of software engineering)

— Over 1500 comments received and adjudicated on various drafts (3
edition)

= 36 Items in Consolidated Reference List

Copyright 2020, Dennis J. Frailey Software Testing Topics
10

UT D The 15 SWEBOK Knowledge Areas

Software Requirements
Software Design
Software Construction
Software Testing
Software Maintenance

Software Configuration
Management

Software Engineering
Management

Software Engineering
Process

Copyright 2020, Dennis J. Frailey

Software Engineering Models
and Methods

Software Quality

Software Engineering
Professional Practice

Software Engineering
Economics

Computing Foundations
Mathematical Foundations
Engineering Foundations

Software Testing Topics 1 1

UT D

Software Requirements

Software
Requirements
oftware ¢ 5 g F 4 Z oftware
& 8 Requirements Requirements Requirements Requirements Requirements Practical 8 4
— Requirements - : M + N ey + N Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a : : System : Iterative Nature
Requirements Requirements L. Requirements of the
> Software I Process Models Sources Classification = Definition Reviews i
Requirement Document Requirements
Process
" gf"d“"t and | o " Elicitation Conceptual L, }S{ystern i Ly Prototypi L5, Change
roce‘ss Tocess Actors Techniques Modeling eql{lremt?n S TOtO yping Management
Requirements Specification
; Architectural
Functional and Software .
; i ' Model Requirements
> Nonfunctional Prgc:: Suppa t gesngn =l t . Requirenieuls Validation An?’ibutes
Requirements and Managemen equirements Specification
Allocation
Emergent Process Quality Requirements Acceptance Requirements
Properties and Improvement Negotiation Tests Tracing
Quantifiable Formal Measuring
Requirements Analysis Requirements
System
Requirements
and Software
Requirements

Copyright 2020, Dennis J. Frailey

Software Testing Topics

12

UT D

Software Design

Software Design

Software Design
Principles

Copyright 2020, Dennis J. Frailey

Distribution of
Components

Error and
Exception
Handling and
Fault Tolerance

Interaction and
Presentation

> Security

Architecture
» Design
Decisions

Families of

— Programs and
Frameworks

The Design of
> Information
Presentation

User Interface
Design Process

Localization and

Metaphors and

Conceptual Models

Internationalization

Software Testing Topics

Software Design Key Issues in Software User Interface Softhare DeS|g.n Software Design Software. Design Software Design
[Fundamentals [l Software Design | [| sauctire and Design Quality Analysis Notations [Strategies and Tools
e Architecture g and Evaluation Methods
; Architectural General User . Structural
General Design 1 S General
Concepts € > Concurrency ¥ Stuctures and > Interface Design g;:i;:l);tes W Dcsc'nptl'ons Strategies
Viewpoints Principles (Static View)
lit Behavioral ; :
Control and ; Qua Y ChavIOora Function-Oriented
(Sjoglext o]f)) > Handling of gtrc]hltcclural Use\" Interface Ly Analys|§ and Ly Descriptions > (Structured)
oftware Design ey yles Design Issues _Eva:‘uz?tlon (Dynamic View) Design
echniques
; The Design of . :
Software Design gn H
P g > Data Persistence 3 Design Patterns —» User Interaction —» Measures Obj?m Oriented
P Modalities etz
o

Data Structure-
Centered Design

Component-Based
Design (CBD)

—» Other Methods

13

UT D

Copyright 2020, Dennis J. Frailey

Software Construction

Software
Construction
Softwar? Managing Practical Construction Softwar_e
— Construction — & N N — N — Construction
Construction Considerations Technologies
Fundamentals Tools
Minimizing Construction in Construction API Design Development
i ife > > > P’
Complexity Life Cycle Models Design and Use Environments

» Anticipating
Change

Constructing for
Verification

> Reuse

Standards in

Construction

> Const_ruction
Planning

Construction
Measurement

Construction
Languages

—» Codin

> Congruclion
Testing

Construction for
Reuse

Construction with
Reuse

> Cons}mction
Quality

—» Integration

» Object-Oriented
Runtime Issues

» Parameterization
and Generics

Assertions, Design
by Contract, and
Defensive
Programming

Error Handling,
Exception

>

Handling, and Fault

Tolerance

> Executable Models

State-Based and
Table-Driven
Construction
Techniques

b

Runtime
—» Configuration and
Internationalization

Grammar-Based
Input Processing

Concurrency
Primitives

—» GUI Builders

> Unit Testing Tools

Profiling,

Performance
Analysis, and
Slicing Tools

14

Copyright 2020, Dennis J. Frailey

Softwa

Software Testing

Testing

_| Software Testing

| Test Levels Test Techniques Test-Related —| Test Process | Software Testing
Fundamentals Measures Tools
Based on the Evaluati
Testing- valuation))
esting The Target of Soﬂyvare, of the Practical Testing Tool
> Related the Test > Engineer’s > Considerations Support
Terminology Intuition and Ur Ofrm_? PP
Experience nderTest
— Input Domain- Evaluation of >
> Key Issues ?:;]teicl:ltlves . > Based > the Tests L TeSF » gz:ﬁgones of
s Techniques Performed Activities
Rela}tlonshnp of CodaBasad
L» Testing to Other Techniques
Activities q

Fault-Based
Techniques

Usage-Based
Techniques

Model-Based
Techniques

> on the Nature of
the Application

Selecting and
L3> Combining
Techniques

Techniques Based

Software Testing Topics

15

UT D

Software Configuration Management

Software
Configuration
Management
i
Masiaseiicitof Software Software Co?l(t)'it:::teion Software Software Release C S(t)_ftwar;
M the s Cl%’[Process | [Configuration — Configuration = S tg ¢ | Configuration | Management N(lm ABUERIR
Identification Control Accoz:l:tsing Auditing and Delivery al”l[z‘lf:l?ent
Szt o Requesting, Software Softw?re
Organizational Identifying Evaluating, and Configuration Functional Software
> Context for > Items to be —> i Confi : e
SCM Controlled Approving Status grIgianon Building
ontrofle Software Changes Information s
Constraints and Sof Implementing Software . Software
| » Guidance for 0 tware Software L5 Configuration | 3 Physical L Software Release
SCM Process Library Changes Status Configuration Management
Reporting Audit
In-Process
| 3 Planning for Deviations and Audits of a
SCM Waivers Software
Baseline
» SCM Plan

Surveillance of

SCM

Copyright 2020, Dennis J. Frailey

Software Testing Topics

16

UT D

Software Engineering Management

Copyright 2020, Dennis J. Frailey

Software Testing Topics

Software
Engineering
Management
Softwiite Software
Initiation and Software Project Software Project Review and) . Engineering
r e r & r B Closure —| Engineering
Scope Definition Planning Enactment Evaluation Management
Measurement
Tools
- 5 lish and
Determination . Determining o Estab'
I and Negotiation |9 Process Planning 3> Lr?gi:xnnsentanon Satisfaction of gletermmmg | 5 Sustain
of Requirements Requirements osure Measurlement
Commitment
Software ;
o . i Reviewing and Plan the
FAeasllbl‘llty ge;§m1l;el gcqull§1tlzn a:ld t Evaluating ilosu;g | Measurement
ier Contr
nalysis cliverables upplier Contract Performance ctivities Process
Management
Progess for the Effort, Schedule, Implementation Perform the
RCV}C'W and I and Cost [of Measurement > Measurement
Revlglon of Estimation Process Process
Requirements
Resource . Evaluate
Allocation > Monitor Process Measurement
- Risk Management 3 Control Process
Quality :
Management > Reporting
L3 Plan Management

17

UT D

Software Quality

Software Quality

—

Software Quality

Software Quality
Improvement

Software
Safety

Copyright 2020, Dennis J. Frailey

Software Quality
Measurement

Software Testing Topics

Software Quality Minacement Practical Software Quality
| Fundamentals] g Considerations Tools
Processes
Software
Engineering Software Quality Software Quality
Culture and Assurance Requirements
Ethics
Value and Verification Defect
» Costs of and » Characterization
Quality Validation
Modﬁ:ls and Reviews and Software Quality
— Quality o Audits —> Management
Characteristics Techniques

18

UT D

Copyright 2020, Dennis J. Frailey

What Do We Mean by
Quality?

Software Testing Topics

19

Ut D Concepts of Quality for Products

“Quality is conformance to requirements"”
Crosby

“Quality is fitness for intended use”
Juran

“Quality is value to someone”
Weinberg

Copyright 2020, Dennis J. Frailey Software Testing Topics

20

Ut D “Quality is
Conformance to Requirements”

« If testable requirements can be established, then it is

possible to decide whether the product satisfies the
requirements - by testing it.

= If measurable quality characteristics can be established,
then it is possible to decide on the extent to which the
product satisfies the requirements — by measuring it.

= Thus you can avoid disputes and have workable
contractual relationships

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics
21

Ut D Issues with
“"Conformance to Requirements” (1 of 4)

Who establishes the requirements?
- Sponsor - The one who pays for the product
— End User - The one who will use the product
— Sales or Marketing - The one who will sell the product

— Engineering - The ones who will design and build it

- \
What the What the
end user S LUK

builds

L wants y

Planetgeek.ch

Copyright 2020, Dennis J. Frailey Software Testing Topics

22

UT D Issues with
“Conformance to Requirements” (2 of 4)

- - Flaws
Are the requirements right? e,
. REQUIREMENT FLAWS
— consistent NCRY
- Com plete z ::‘:;t::::://t:i;r:smws Jzﬂ)

4. INCORRECT
5. CORRELATIONS NOT KNOWN / DEVELOPED

- visible i
— correct

> Who determines whether the
requirements are right?

> What if you discover a problem later on?

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Issues with
“Conformance to Requirements” (s of 4)

What about implicit vs. explicit requirements?
— Explicit requirement: pizza should be hot and flavorful

— Implicit requirement: not harmful

Copyright 2020, Dennis J. Frailey Software Testing Topics

24

ur D Issues with
“Conformance to Requirements” (4 of 4)

What about when requirements change during the
development process?
- Who makes the changes?
— Who controls and authorizes the changes?
- Who pays for the consequences of changes?

Change Control

A crucial component in governing a system is a stringent change control
process...

Internal Audit Requests
Integvations Secuvi ity Changes

\
“g\\.

Chamge Contvol
e

Business Pv ocess Changes ‘§
Bersm

Special Reques!—s

Copyright 2020, Dennis J. Frailey Software Testing Topics

il 1 “Quality is
Fitness for Intended Use”

= This definition is based on a fundamental
concept of law - that a product should be
suitable for the use that it is intended for.

= This definition accommodates the fact that
we may not be able to fully define the
requirements.

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics 26

UT D

Issues with
“Fitness for Intended Use” (10 3)
Who defines fitness?

— Consider a TV set
= which fithess characteristics are not

understood by
— Typical User
- Engineer
— Sales Personnel
TescEal”
\ < |

— Consider a software program

= which fithess characteristics are not

understood by
— The typical software developer?

Software Testing Topics

- The typical end user?

Copyright 2020, Dennis J. Frailey

27

UT D Issues with
“Fitness for Intended Use"” (2 of 3)

Different users have different definitions of fithess

— Ease of use for novices

— Control of fine details for experts

— Ease of maintenance for support staff

— Able to survive power failures

— Compatibility with previous system

Theodysseyonline.com

> Uses change as users grow in experience
— Too many “ease of use” and “automatic” features may

frustrate an expert

Copyright 2020, Dennis J. Frailey

Software Testing Topics

28

UT D Issues with
“Fitness for Intended Use” (3 of 3)

The “pleasant surprise” concept
User gets more than he or she expected

They really knew what they
were doing when they
designed this software

There is often tension between the engineer
knowing better than the customer and the
customer knowing better than the engineer

Copyright 2020, Dennis J. Frailey Software Testing Topics

29

Ut D “Quality is
Value to Someone”

= This definition incorporates the idea that quality
is relative

= And it places increased emphasis on
understanding what quality means to the
intended user of the software

HOWEVER ...

Copyright 2020, Dennis J. Frailey Software Testing Topics

30

UT D
Issues with “"Value to Someone” (1of4)

How is the
) financial software?
| want hot
games

48

Whose opinion counts?

What Can it survive
ﬂ features do spilled drinks?

you want?

Does it have
Facebook and
Twitter?

»You may need to weigh different opinions

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D .
Issues with “"Value to Someone” (20f4)

Logic vs Emotion
- “Glitz"” v. "Substance”

Which Car
is Best for
Our Family?

oo ARUNOW Vika)y

Copyright 2020, Dennis J. Frailey Software Testing Topics

32

UT D .
Issues with “"Value to Someone” (3of4)

Value depends on What Features are Most Important

— Space Shuttle
= 0 defects
= Reliability

- Video Game

= Good user interface
= High performance

— School Laptop S
= Rugged
= Fast
= Good Battery Life
= Good Software

Copyright 2020, Dennis J. Frailey Software Testing Topics

33

UT D

Issues with “"Value to Someone” (4 of4)

Some Needs are Implicit (unstated)

Explicit

= I need an office
= It must have a computer
= And lots of space

Implicit

I need a desk
And a chair
= And convenient electrical outlets

Copyright 2020, Dennis J. Frailey

Software Testing Topics

34

Ut D Definitions of Software Quality

IEEE: The degree to which the software possesses a
desired combination of attributes

Crosby: The degree to which a customer perceives
that software meets composite expectations

Note that both definitions imply
multiple expectations

Copyright 2020, Dennis J. Frailey Software Testing Topics

35

Summary of Quality Definition Issues

You Must Define Quality
— Before you can engineer it into your product
— ... and before you can measure it
— ... or test whether the product has the desired quality attributes

Quality has Multiple Elements
— It reflects a multitude of expectations

Quality is Relative
— Quality is in the eye of the customer

Quality encompasses fitness, value, and other attributes

Copyright 2020, Dennis J. Frailey Software Testing Topics

36

Uur D Quality Attributes are

Seldom Directly Measurable

e

= Fitness for intended use

= Value to someone

= Satisfaction of requirements
— Including implicit, unstated requirements

= Maintainability

= Reliability

= Supportability

How can
= these be
measured?

= Testability

[We need to find suitable ways to measure]

these attributes.

Copyright 2020, Dennis J. Frailey Software Testing Topics

37

UT D Some Attributes Are Measurable

Examples
— Water boils at 100° Centigrade

- My new application will complete at least 10 searches per
minute

— Code written in C takes less memory space than code written in
Python

The above statements may or may not be true, but they
can all be tested because they are all measurable.

| think that THIS | think THIS is the reason | think THIS is a good way
is the problem. we're having the problem. to test if the guess is right.

IT STARTS WITH THAT LEADS TO AN THAT CAN
A QUESTION EDUCATED GUESS BE TESTED

Elicitinsights.com

Copyright 2020, Dennis J. Frailey Software Testing Topics

38

UT D Some Attributes are Not Measurable

Examples:
— Joe’s code is better than Jan’s code
— Lisp is a superior programming language to C#

— Object oriented design produces code that is more
maintainable

The above cannot be measured unless we define what
we mean by:

— Better than
— Superior > In a measurable way!
— Maintainable

ey

—

Copyright 2020, Dennis J. Frailey Software Testing Topics

39

Ut D Surrogates

In order to measure an un-measurable attribute
— such as “quality” or "maintainability”

We may need to measure indirectly
— we measure something else that is associated with that attribute
— such as “defects” or “repair cost”

This alternative, measurable attribute is called a
surrogate.

Copyright 2020, Dennis J. Frailey Software Testing Topics

40

Ut D Surrogates Are Not the Real Thing

A surrogate may or may not accurately reflect the
desired attribute

Examples:
- Defects are a common surrogate for quality

— But lack of defects may or may not reflect quality.
= Lack of defects may reflect failure to do effective testing
= Or failure of the customer to use the product

— Repair cost may or may not reflect maintainability of
the software

= Perhaps “repair” included many changes to the software to
add new features

= Or perhaps the maintenance staff are not competent

Copyright 2020, Dennis J. Frailey Software Testing Topics

41

Ut D There Are Systematic Ways to
Identify Surrogates

= Decomposition Approaches
— Fixed models [cuatyFacer
— Individualized models

= Standardized Approaches

— These enable comparisons of software
from different organizations

— But may not fit the desired quality
characteristics of some software

There is little consensus on how to measure quality
attributes, so most organizations define them in ways
that fit their specific customer needs.

Copyright 2020, Dennis J. Frailey Software Testing Topics 4 2

UT D

Decomposition Approaches

Boehm Software Quality Model

Device

o} Lot

Self Containedness |

General Utility

| Acessibility |

Maintainability

Communicativiness |

| Understandabiity

| Self Descriptiveness |

Modifiability ———

| Structuredness |

| Conciseness

| |
| Legibility |
Augmentability |

Copyright 2020, Dennis J. Frailey Software Testing Topics

~

The concept
here is to
decompose
quality
attributes or
factors into
subfactors
until you
find factors
that are

measurable.

_ J

43

UT D A Closer Look at the Boehm Model

. Quality Measurable
Primary Uses Factors Quality Criteria
General Utility Portability Device Independence
As-is Utility Reliability Completeness
Efficiency Accuracy
Human Consistency
Engineering
Maintainability Testability

Terminology

Understandability [Fenton’s]

Modifiability

Copyright 2020, Dennis J. Frailey Software Testing Topics 44

UT D Comments on Boehm’s Model

= This is a way to decompose what we mean by
“quality” until we have measurable attributes
(quality criteria)

= These quality criteria are surrogates for quality
— There are many of them

— Some of them relate to multiple quality factors

Quality Measurable
Factors Quality Criteria

Portability
Reliability l{ Completeness

Software Testing Topics

Copyright 2020, Dennis J. Frailey

UT D

Decomposition Approaches
McCall Software Quality Model

Metrics

Quality Quality
Factors Criteria
Correctness ['aceability
QCompleteness
Reliability :Consistency
/ \Accuracy
Product Eficienc Error tolerance
Operation i sExecution efficiency —————
\ Inte grity ______h___HStorage efficiency ———
'\Access control
Usability \Access. gudit
\Operablllty
\Training
Maintain ability Communicativeness
/ 5 Simplicity
ggﬂiﬁ Testability "~ Conciseness
\ Instrumentation
Flexibility ~Self-descriptiveness
Expandability
Generality
/ Portability Modularity
Product — ~—3Software system independence —
Transttion \ Reusability 7™ Machine independence —————

Interoperability

Communications commonality —

4)

As you can
see, it's
possible to
establish a
lot of
criteria
related to
quality

Data commonality

Copyright 2020, Dennis J. Frailey

Software Testing Topics

N\ J

46

UT D

McCall Model - Quality Factors
Criteria

and (Measurable)

-

As with the

~

Boehm model,
some criteria

_

relate to
multiple
quality
factors

J

Correctness —{ Traceability]
% Completeness]

i, EQ = I
Accuracy]

Efficiency 4\1 Error tolerance |
Execution efficiency |

- \ Storage efficiency |
Integrity % Access control]
Access audit |

Usability Operability]
Training]

Maintainability Communicativeness]
Simplicity |

Testability Conciseness]
Instrumentation |

Flexibility Self-descriptiveness |
Expandability |

Portability Generality '
Modularity]

e Software system independence |
Reusability - Machine independence |
/ Communications commonality |

Interoperability t‘/: |

Data communality

Copyright 2020, Dennis J. Frailey

Software Testing Topics

47

Ut D Do I Really Need to Measure
So Many Attributes?

= The various models tend to be comprehensive

— But you may need to use only a portion of a model for your
specific situation

- Ultimately you need to measure only what will actually
be used and be useful

Copyright 2020, Dennis J. Frailey Software Testing Topics

48

UT D

Measures of Software Quality
Based on

Defects or Faults or Failures

Copyright 2020, Dennis J. Frailey Software Testing Topics

49

Ut D Quality = Lack of Defects
(or Lack of Faults or Lack of Failures)!?

The advantage of this approach is that it is often easier to test
for defects or failures and easier to measure them
than many other measures of quality

— However this approach may not capture what quality means to
the end user

= Ease of use
= Speed
— And it may not reflect all that the developer considers important
= Maintainability
= Supportability

- ' Defects and faults usually mean the
same thing — causes of failures.

Copyright 2020, Dennis J. Frailey Software Testing Topics 5 0

— Defect Density!?

Number of Defects
Size of Software Product

Defect Density =

Variations:
— Failure Density (instead of defects)
— Number of Defects (this can be defined in different ways)

= Known Defects
= Total Defects (Known Defects + Latent Defects?)

— Size of Software Product (can be defined in different ways)
= It depends on the definition of size

1Sometimes called “defect rate”, although this is inaccurate
2 Latent defects are defects we have not yet discovered

Copyright 2020, Dennis J. Frailey Software Testing Topics 5 1

Ut D Defect Density Advantages

= Easily measured, compared with other options

= Gives a good, general idea of the overall quality of the

software

= This measure has been used for over 50 years to
measure software, and overall the defect density has
correlated well with perceived quality of products

Defect Density vs. LOC

@
s

@
s

g

Defect Density {defects/kLOC)
i
2

(=]
O

o °
200 400 600 800 1000
LOC under review

Copyright 2020, Dennis J. Frailey

BN 10

®

)

o

Productivity (size/Effort
N B
N £ ()]
Defect Density
(Number of Defects/Size)

o
o

0 1 2 3 4 5 6 F/ 8 9 10 11

Time (Months after Go-live)

Software Testing Topics 5 2

Ut D Defect Density Drawbacks
(1 of 3)

= People can’t always agree on what constitutes a
defect
— Failure in operation vs mistake in the code
— Post-release defects vs defects found during development
— Discovered vs latent defects

= Severity of problems caused by defects may be hard
to assess
— Some software defects have no significant impact on
customer’s perception of quality
— Different customers use the software in different ways

Copyright 2020, Dennis J. Frailey Software Testing Topics

53

UuT D Example from IBM?

= Approximately one out of three defects will only
cause a user failure once in 500 years.

= A very small portion of defects (<2%) cause the
most important user failures

~ A
Number of defects may not be strongly

correlated to the frequency or severity

of end user failures.
_ Y.

1 See Adams in reference list.

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Defect Density Drawbacks

(2 of 3)
» Different measures of the
time scale - :
Release Purchase | | Installation First | I
Use || Failure
— Amount of time since A vV '\/I {} J\/L

) No Not yet.
— Amount of time the product problems But we only
is actually used with the use it once a
software? year.

— Processing time actually =
used by the product ol |

ao

Ti s

=0

=20

10

o
sa 167 z2s50 =33 al1es aso s8> ses 7as =31 S1a 97

Cyvcole Step

Researchgate.net

Copyright 2020, Dennis J. Frailey Software Testing Topics 5 5

UT D

Defect Density Drawbacks

(3 of 3)

= Different measures of size

— This can make it hard to compare different projects or processes

or development methods or organizations

SOFTWARE SIZE (MILLION LINES OF CODE)
Source: NASA, IEEE. Wired, Boeing. Microsoft, Linux Foundation, Ohioh
fodern High-end car
windows Vista | i i i i i
Large Hadron Collider “ E E E i i
Boeing 757 [N | : : | : : : : :
N T N R S A A A A R
Google Chrome [l i i E E E i E E i i
Linux Kernel 2.6.0 [l ! ! | ' ' H i H i i
Mars Curiosity Rover [l | ! ! H H ! H ! ! !
Hubble Space Telescope [l i i H H H i 1 1 i i
F-22 Raptor [i i H : 1 i 1 H : :
D huttle | 1
10 20 0 40 50 0 0

= What is defect density telling us?
— The quality of our product?

or

— The effectiveness of our defect detection and correction process?

Copyright 2020, Dennis J. Frailey

Software Testing Topics

56

Ut D Despite These Drawbacks, Defect
Density is Very Widely Used

Some metrics that incorporate defect density
— Cumulative defect density
= During development or after delivery
— Total serious defects found
— Mean time to fix serious defects
— Defects found during design reviews per KLOC
— Code inspection or peer review defects found per KLOC
— System test errors found per KLOC
— Customer-discovered problems per KLOC or per product

Copyright 2020, Dennis J. Frailey Software Testing Topics

57

uUT D

Usability
Hard to Test For & Hard to Measure

4 Formal Definition:)

Usability is the degree to which a system can
be used by specified users to achieve

specified goals with effectiveness, efficiency

and satisfaction in a specified context of use.
_ ISO/IEC 25010 (2011) /

Commonly used concepts of usability:
— User Friendliness
— Ease of use

This is a very complex concept that is hard to
measure, but important to most end users

Copyright 2020, Dennis J. Frailey Software Testing Topics

58

Ut D Three Categories of Usability?

= Effectiveness
— Can users complete the tasks correctly?
Quantity *Quality
100

— Example: Effectiveness =

= Efficiency
— Time required to complete the tasks

Effectiveness

— Example: Efficiency = Task Time

= Satisfaction

— Degree to which the end user likes the software
> This is a very subjective measure

1 See Fenton, section 10.3 for further details

Copyright 2020, Dennis J. Frailey Software Testing Topics 59

il Internal Attributes Generally Viewed as
Related to Usability

These are more readily measured and
can be measured before the software is released

= Good use of menus
= Good use of graphics
= Good help functions

= Consistent interfaces

-

_

Researchers have been

unsuccessful in relating these

to effectiveness, efficiency or
customer satisfaction.

~

J

= Well-organized reference manuals and help files

[Use of these to predict usability is not recommended.]

Copyright 2020, Dennis J. Frailey

Software Testing Topics

60

Ut D Testability

A product is testable if:
— It can be tested in a reasonable way (readily testable)
— The tests are well defined, comprehensive, and not overly redundant

— Each test can be directly traced to and from:
= product requirements,
= derived requirements resulting from design decisions, or
= design or coding elements calling for specific testing

— Each test failure can be directly traced to:
= a requirement that is not being met, or
= A design element that was not properly implemented, or
= A portion of the code that has a programming error

[Good testing starts with testable]

requirements and designs.

Copyright 2020, Dennis J. Frailey Software Testing Topics
61

Ut D Testing is unsuitable when ...

= It would destroy the product
= Itis too dangerous
= Itis too costly

= It cannot reasonably be expected to provide
confidence that requirements are satisfied

= It cannot be done

Copyright 2020, Dennis J. Frailey Software Testing Topics

62

UT D

Evaluation Techniques
(other than testing)

= Examination

— For example, reading designs or code or other
documents to check for errors

= Demonstration
- e.g. flying an airplane to show that it can fly
— e.g. running a program to show that it works

= Other techniques (examples)
- providing a formal proof that a program is correct
- measuring something

- showing through statistical analysis that the
probability of a defect is below a threshold

Copyright 2020, Dennis J. Frailey Software Testing Topics

63

uUT D

Reasons why Requirements/Designs
May be Hard to Test

Requirements may not be well understood
Requirements may not be well documented

What seems obvious to the customer or the system
designer may not seem clear or obvious to the software
developer or tester

— Different kinds of knowledge
— Unstated assumptions

The customer and the software developer may not agree on
what constitutes an acceptable test

Changes made during software development may not be
communicated to the software team

Copyright 2020, Dennis J. Frailey Software Testing Topics 64

uTt D Suggestions (slide 1 of 3)

= A requirement or design feature is not complete until
you have reached agreement on how it is to be tested

- For each requirement, reach agreement between the software
team and the customer or system engineer on how the
requirement is to be tested

— For each design feature, reach agreement between the software

designer and the software test team on how the design feature is
to be tested

Testable Requirements

Copyright 2020, Dennis J. Frailey Software Testing Topics

65

uTt D Suggestions (siide 2 of 3)

= Control changes to requirements and design

- Don't allow a requirements or design change without a clear
understanding of the effect of the change on the software cost,
schedule and technical development

— For each change to requirements or design, indicate how the
corresponding tests must be changed.

gﬁﬁge CHANGE EVAL UATE CHANGE
REQUEST TECHNICAL, COST & APPROVAL | MPLEMENT

i"”f’ of 00 CUMENTED SCHEDULE IMPACT P CHANGE
v SPONSOR FORMAL INTEGRATE

APPROVAL EVALUATION OF CHANGE INTO
For SYSTEM MPACT pioiigtisl
Lawer, DO CUMENTS
More Compiiex
Proyjects

CHANGE
FUNCTIONAL Researchgate.net
CONTROL BOARD
REVIEWS [—J~

RECOMMENDATION

Copyright 2020, Dennis J. Frailey Software Testing Topics

Ut D Suggestions (siide 3 of 3)

= Keep track of which tests correspond to which
requirements or design elements (traceability)

Ideal
Requirement 1 €*"\—-———) Teast 1

Acceptable
Requirement 1
Requirement 2 Test A
Requirement 3

Copyright 2020, Dennis J. Frailey Software Testing Topics 67

uUT D

Other Traceability Options

Acceptable

Test 1
Requirement A Test 2
Test 3

Undesirable

Test A
Test B
Test C

Requirement 1
Requirement 2
Requirement 3

Copyright 2020, Dennis J. Frailey Software Testing Topics

68

Reasons Why Code May Be Difficult to Test

= Code is not well structured
_ Need| | | We will address this in
eedlessly complex parts 4 and 5
— Poorly organized

= Code elements do not trace directly to requirements or
design elements

— So when the code causes a failure, it is hard to determine whether
the problem is with the code or the design or the requirement

= Code is not well documented or does not follow coding
conventions

— Hard to understand
— Error prone

Copyright 2020, Dennis J. Frailey Software Testing Topics
69

UT D

Seeding and Tagging
A simple and effective way to
assess Testing Progress

Copyright 2020, Dennis J. Frailey Software Testing Topics

70

Ut D Seeding and Tagging

Purpose: To help you estimate how many undetected
errors (defects) are in your code

When to do this: During test planning and during the
testing process

Suppose: You have been testing your code and have
discovered D, errors (defects).

Question: How many errors are left?
Technique: Seeding and Tagging

Concept: Introduce extra errors and see how many of
them your test process has found.

Copyright 2020, Dennis J. Frailey Software Testing Topics

71

Ut D Overview

1. Inject extra errors
before testing starts

2. See how many of those errors you find during
the normal testing process

Copyright 2020, Dennis J. Frailey Software Testing Topics

72

Ut D Seeding and Tagging Details

= Introduce a given number of extra errors into the
software -- say E of them

= Run standard tests, detecting D, of them
= Compute D,/E = % of errors detected

= Suppose D; = number of genuine errors
already detected

= Then you assume the total number of errors in the
software is

(_D*E/D,)

Copyright 2020, Dennis J. Frailey Software Testing Topics

73

UT D

Example of Seeding and Tagging

200 defects found so far
You have injected 20 extra defects
You have found 12 of these extra defects

Therefore, assume total defects =
200 * 20/ 12 = 4000 / 12 = 333 total defects

=> 333 - 200 = 133 defects remaining

4 By performing this analysis from time to time,
you can estimate your defect density and your
testing progress over time.

Copyright 2020, Dennis J. Frailey Software Testing Topics

74

UT D

Part 2

Some Basic Principles of
Measurement and Data Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics

75

UT D

Copyright 2020, Dennis J. Frailey

Contents

Definitions

Scales

Basic Analysis Approaches
Statistical Distributions

Other Statistical Concepts

Software Testing Topics

76

UT D Definition of Measurement
Measurement is ...

... the process by which numbers or symbols
are assigned to attributes of entities in
the real world in such a way so as to
describe them according to clearly defined
rules.

»The assignment of nhumbers must
preserve intuitive and empirical
observations about the attributes

and entities @
<

Copyright 2020, Dennis J. Frailey Software Testing Topics 7 7

Source: Fenton, page 5

S (B Preservation of Attributes

Example

“House A is bigger than House B"”

This is a meaningful statement only if the number
we assign to 'size” preserves our intuitive notion
of houses and their sizes.

House A House B

Copyright 2020, Dennis J. Frailey Software Testing Topics

78

UT D But Intuitions Vary

What do we really mean by "“size”?

Before we can measure size, we must define a
model that reflects a specific viewpoint

— The model must specify an entity to be measured

and
— an attribute of that entity.
» l.e,,

= what do you want to measure? and
= what do you want to know about it?

— Examples (next two slides)

Copyright 2020, Dennis J. Frailey Software Testing Topics

79

Ut D Functionality Model for Size of a House

In this model, the size of a house is based on
how many people can comfortably live there

» The size of a house is measured by the number
of bedrooms and the number of bathrooms

Master Bedroom

Living Room

Oaa e

Front of the House

Copyright 2020, Dennis J. Frailey Software Testing Topics 80

UT D Cost Model for Size of a House

In this model, the size of a house is based on
how much it will cost to construct it

» The size of a house is measured by the square
feet of living space

Master Bedroom

Kitchen

-
1
- v e ——

Living Room
200" x 13%0"

Front of the House

Copyright 2020, Dennis J. Frailey Software Testing Topics

U D Storage Space Model for

Size of Software Used on a PC

In this model, the size of software is based on how
much disk space it occupies

» The size of software is measured by the number of
bytes of memory it requires when stored on a disk

15.6 GB
—

49.3 GB
—

Backup 149.5 GB
O —

https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcSGaF3LbJOReKic-
6yZyOr9_cKS3Lr3gV0zzEX9rsMezUxHinFliw

Copyright 2020, Dennis J. Frailey Software Testing Topics

82

Ut D Cost Model for
Size of Software Used on a PC

In this model, the size of software is based on how
much it will cost to construct it

» The size of software is measured by the number of
user stories used to establish the requirements.

https: / /www.google.com/url?sa=i&rct=j&q ad=rja&uact=8&ved=0ahUKEwikptj9kdfSAhWKz4MKHfSNAfEQjRWIBw&url=https
%3A%2F%:2Fen.wikipedia.org%2Fwiki% 2FUser story&bvm—bv 149397726 d ch&pS|g—AFQ]CNFdWIGXMDanfsbmrg|NdbLFEGADg&ust 1489620239765305

Copyright 2020, Dennis J. Frailey Software Testing Topics

83

UT D

Copyright 2020, Dennis J. Frailey

Contents

Definitions

Scales
Basic Analysis Approaches
Statistical Distributions

Other Statistical Concepts

Software Testing Topics

84

UT D Measures Allow Us to Categorize and
Analyze the Attributes of Entities

But measures do not have to be humbers.

Example: Road Signs — shape and color are
used to categorize road signs

—

2 a\
sPeeD || |PRIVATE
LiMIT [} {| roaD
T NO THRU
Warning 10 TRAFFIC
- N ———/

|

Inforniation

Copyright 2020, Dennis J. Frailey Software Testing Topics

LI D Definitions: Scales of Measure

A scale of measure
or

A level of measurement
or simply

A scale, is:

— A collection of symbols or numbers used to
classify attributes of entities or variables

— A classification system for describing the nature
of information

> There are various scales in use and the
properties of those scales are important

— The properties help determine which forms of
analysis are appropriate

Copyright 2020, Dennis J. Frailey Software Testing Topics

86

Ut D Classification of Scales

The classification system most widely adopted in
data analysis and statistics was originated by
Stanley Smith Stevens! for use in psychological
research.

> This classification includes four levels of scales:

- Nominal 4 Researchers have debated)
- Ordinal Stevens’ classification and
_ Interval proposed other classification
ttttttt o _ systems, but no other scale
- Ratio classification has achieved such
_ widespread use.)

i1Stevens, S. S. (7 June 1946). "On the Theory of Scales of Measurement"”. Science. 103 (2684): 677-680.

Copyright 2020, Dennis J. Frailey Software Testing Topics 87

UT D
Stevens’ Types of Scales

Analytically Useful
Characteristics

Nominal Ordinal Interval Ratio
Scale

Copyright 2020, Dennis J. Frailey Software Testing Topics 88

) Scales Help Us Understand What Kinds
of Analysis are Meaningful

Color Height
No Natural Order Natural Order

Copyright 2020, Dennis J. Frailey Software Testing Topics

89

UT D

Characteristics

Nominal Scales

Copyright 2020, Dennis J. Frailey

Nominal

Ordinal Interval
Scale

Software Testing Topics

Ratio

90

UT D

Nominal: a scale that places entities in
categories - but without any ordering

Example: Color \ . :’;}',.(\\
- marbles are = L =
. _ & T
= Blue, or @

= Black, or ®
* Red, or %&
= Yellow G@ ';O

Software Example: Defect Origin
- defects discovered while testing are
= Requirements related, or
= Design related, or
= Programming related, or
= Testing related.

Copyright 2020, Dennis J. Frailey Software Testing Topics

91

UT D . ..
Nominal Scales - Characteristics

= We can categorize the entities ®
— Often in terms of specific qualities such
as color or shape

. -

= We can count the size or frequency ®
of each category Q@g
0° 6°

= We can determine the most
frequent category (the mode)

= But there is no natural order or
ranking to the categories

= And there’s no such thing as the
median or average

Copyright 2020, Dennis J. Frailey Software Testing Topics

®

92

Ut D Other Examples of Nominal Scales

= Gender

= Nationality

= Ethnicity

= Language

= Genre

= Style

= Biological Species
= Form or Shape

-

o

We can use numbers to classify

attributes or variables in a nominal scale

But they do not have any numerical
values or relationships other than
equality or inequality

J

= Parts of Speech (in grammar)

Copyright 2020, Dennis J. Frailey

Software Testing Topics

93

UT D

1. Tigers

2. Elephants

3. Horses

Copyright 2020, Dennis J. Frailey

Example:
Suppose We Have Three Animal Species

Mynicetime23.wordpress.com

True-wildlife.blogspot.com

kidssearch.com

U

~
(Just because we have numbered

them in a particular order does
not mean anything.

J

Tigers are not more
important because they
are listed first

Horses are not 3 times as
valuable because we gave
them the number three

Software Testing Topics 9 4

UT D

Characteristics

Ordinal Scales

Copyright 2020, Dennis J. Frailey

Nominal

Ordinal
Scale

Interval

Software Testing Topics

Ratio

95

UT D
Ordinal: there is a ranking or ordering

= Example: military rank = SW Example: defect severity
= General = minor
= Colonel = significant
= Lieutenant = major
= Sergeant

= Example: size of dogs

Mhﬁﬁh

small medium lar xlarge
10-20 lbs 20 - 40 1bs 40 - 6

https:/ /cdn.shopify.com/s/files/1/0118/8082/files/dog_sizes_antler.png?373

Copyright 2020, Dennis J. Frailey Software Testing Topics

UT D
Ordinal Scales - Characteristics

= You can place them in order

(sorting) @

= You can determine the
median (middle) item in a
list

> But you cannot compute an
average

> And there is no mathematical relationship
between categories

> (sergeant is not “"twice as” high as “private”)

Copyright 2020, Dennis J. Frailey Software Testing Topics 9 7

UT D Ordinal Scales — Other Examples

= Rank in a contest or race

= Degree of health
— Critical Serious Fair Good

= Comparative restaurant ratings
— Excellent Very Good Good Poor

Excellent

Terrible

categories is not defined

_ not the “average” (mean)

" The degree of distance between successive A

You can determine the middle item (median) but

J

Copyright 2020, Dennis J. Frailey Software Testing Topics

98

UT D

Characteristics

Interval Scales

Copyright 2020, Dennis J. Frailey

Nominal

Ordinal
Scale

Interval

Software Testing Topics

Ratio

99

Ut D Interval: there is a fixed distance between

consecutive members of a sequence

.

Given any two dates, we
can count the distance
between them in days

- Example: Dates
= 1/1/2012, 1/2/2012, ...

- Example: Temperature in Farenheit

= 10 degrees, 30 degrees, etc.

Given any two temperatures, we can count the
distance between them in degrees

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 00

UT D Interval Scales - Characteristics

= There is an ordering You can tell if one is
larger than another
= You can quantify the
distance (degree of

difference) between
any two values

.
Given any two dates, we
can count the distance
between them in days

= You can add or 30° plus 10° = 40°

subtract values
3/5/2020 - 3/1/2020 = 4 days

» But you cannot
multiply or compute a
ratio

— See next slide

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 o 1

UT D With Interval Scales We
Cannot Multiply or Divide

- Example: Dates
= 1/1/2012, 1/5/2014, 1/25/2020, ...

It does not make sense to say one date is “five
times" another date

Mathematically, this means there is no “true 0”
value -- we can place the "0” value anywhere in
the sequence

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 2

UT D Interval Scale Example - Time

= We lack a precise measure of when time began

= SO0 we measure time using an arbitrary “"0” point

— Years are measured since an arbitrary date

= Microsoft Excel dates are measured in days since 12/31/1899

— Scientists often measure time in years backwards from the

present
. Life Appears Human A;JJpears
°
3 Eayth Forms
= Finst . Moment ¢ Sun Forms \ &

* * * * *

http:/ /thestoryofouruniverse.com/wp-content/uploads/Time-scale-2a.jpg

Copyright 2020, Dennis J. Fr

* * * * * * * * *
13,000 12,000 11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 2000 1,000

Time, in Millions of Years

Present

103

Ut D Other Examples of Interval Scales

= Temperature (on Centigrade or Fahrenheit scale)
= Map coordinates (longitude or latitude)

= Map direction (degrees from North)

4))
Note: a common error is to assume you can

compute ratios for items in an interval scale.

S See next slide for more information on this. y

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 04

ur D Computing Ratios for Interval Scales

= The ratio between two items on an interval scale
cannot be determined

= But you can determine the ratios between differences

4)

Example: the parent’s age could be twice
that of the child’s:

Each age is the difference between the
\ current date and the date of birth Y

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 0 5

UT D
Ratio Scales

Characteristics

Nominal Ordinal Interval Ratio
Scale

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 06

Ut D Ratio: There is a fixed distance between
consecutive sequence members, AND
multiplication is meaningful

This means that ratios are meaningful

= Examples:

- Size 4 - N
Yoy sy 60 mph is
- Weight ~0001g/1 17%- twice as
e 'y
- Length i ey fast as 30
s0 kmh \/
. = g mph
— Duration - _ P

— Electric Charge

Note that there is a “true 0” value

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 o 7

With a Ratio Scale We Can Compute an
Average or Mean

> Because we can multiply and divide

2015 U.S. Average Electricity Retail Prices Average home size
(cents per kilowatt hour)
1983 1993 2003 2013
A \\

« "'}.I
N |
s [A

mine g 1,725 2,095 2,330 2,598

I 1001101200 Matonal Avrage = 10.2 Spun ot Sy e na bt 330

:Etlﬁ?é;éi_eleal:lrsigR:E?:;ﬁg:‘:{;if]e-g{iggf?ai;lgli(/:fill)%sslf\t,\l!‘l’?/article_galIery/ http://homevestors.com/wp-content/uploads/Average-Home-Size.png
TOP TEN LEAST EXPENSIVE AVERAGE GAS PRICES August 8, 2016

SOUTH
CAROLINA ALABAMA TENNESSEE MISSISSIPPI NEW JERSEY VIRGINIA ~ ARKANSAS DELAWARE LOUISIANA TEXAS

e

Bl Kl EIN BN EXE EOE KX EXa

a :

Note: Prices are per gallon for regular unleaded gasoline. Source: AAA (GasPrices.AAA.com)
https://www.google.com/url?sa=i&rct=j&q=&esrc: ce=i d=&cad=rj; & JKEwiXhcuLzZNTSAhVM34MKHQ9OUCNYQjRwWIBwW&url=http%3A%2F%?2Fnewsro
om.aaa.com%?2F2016%2F08%2Faverage-gas-price: ing-steady-begin- % 2F&psig=AFQjCNFYj2pTtSvCIpmXIAwWWf_1pFq-aeg&ust=1489532668700886

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 08

UT D

One Other Scale is Often Used in Data
Analysis

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 09

LT [0 Absolute Scales

= Absolute: all mathematical operations are meaningful
— Square root
— Exponentiation

— Etc.

= In some definitions, only positive values are permitted

- (i.e., there is an absolute 0, marking the starting point of the
scale)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 0

Test Yourself — What Scale is Clothing Size?

https://rules.ssw.com.au/PublishingImages/size-stories-bad-example.jpg

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 1

uUT D

Scales - Summary

Characteristics

Nominal

Ordinal

Interval

Ratio

Categorization,
Classification

™M

™M

M

&

Mode (most frequent)

™M

&

Order, Comparison, Sorting

&

Median (middle)

&

Fixed Distance, Add,
Subtract

NINIR|N

NN NN

Ratio of differences

&

Multiply and Divide, Ratio

True O

Mean

NN NN

Copyright 2020, Dennis J. Frailey

Software Testing Topics

112

UT D

Misuse of Scales

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 3

Ut D Example - Assigning a Scale to
Test Failures

{Blue, Green, , Red?}
%
Fewest Most

This is an ordinal scale
— It provides a ranking but not ratios
— There is not a fixed difference between values

= The difference between “red” and “yellow” is not
comparable to the difference between “yellow” and
“green”

— It makes no sense to add, subtract, multiply or
divide the values.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 4

UT D But Suppose we Replace with a
Numeric Scale

4 = Blue 3 = Green
2 = 1 Red

We are tempted to make meaningless or
misleading statements like these:

“The average test error improved from 2.2 to 3.1"

“The average test error improved by 47%"

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 5

Ut D Another Example - Customer Survey

The average response from our customers is “good”
[on a scale of very poor, poor, good, very good]

— But the scale is not a ratio scale (or even an interval
scale), so what does “average” mean?

— Does “half very good and half poor” mean “good”?

http://www.brecoflex.com/wp-content/uploads/2016/10/survey.jpg
Copyright 2020, Dennis J. Frailey Software Testing Topics

116

Assigning Numbers Can be Misleading

[The properties of the number system)
may hot necessarily apply to the
attribute being measured

_

Consider the attribute "temperature™

Scale Yesterday Today
Centigrade 0 18
Fahrenheit 32 64

[Is it twice as hot today as it was yesTerday?}

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 7

ut b Twice as ...

“"Twice as” is a meaningful concept for numbers

It is not necessarily a meaningful concept for

temperature
» Because centigrade and Fahrenheit are interval scales, not
ratio scales
4

The error we make is assuming that
properties of the number system apply
to the attribute being measured

Footnote: “twice as” is a meaningful concept for temperature measured on the Kelvin
scale because the volume of a gas is proportional to its temperature on that scale.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 1 8

UuT D A Very Common Example:
Student Grade Point Average

Student 1

= B - 3 points

= B - 3 points
= B - 3 points
= B - 3 points
= B - 3 points

Average: 15/5 =
3.0

Student 2
Grade Point \

= A - 4 Points Average is an

= A - 4 Points example of a

= B - 3 Points Desc::lp f:ve

) Statistic.
= B - 3 Points _
- D - 1 Point Not technically
accurate, but does

give a useful

= Average: 15/5 = indication.

3.0 \§ J

Are These Students Really Equal?

Copyright 2020, Dennis J. Frailey

Software Testing Topics 1 1 9

ut D Contents

Definitions

Scales

= Basic Analysis Approaches

Statistical Distributions

Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 20

What Do We Have, After Data Collection?

We have a collection of data values,

known as a dataset or a batch.

These values are measurements
of

attributes

of

entities

Play golf dataset
A 0 =

OUTLOOK TEMPERATURE | HUMIDITY WINDY PLAY
sunny 85 85 FALSE Don't Play
sunny 80 90 TRUE Don't Play
overcast 83 78 FALSE Play

rain 70 96 FALSE Play

rain 68 80 FALSE Play

rain 65 70 TRUE Don't Play
overcast 64 65 TRUE Play
sunny 72 95 FALSE Don't Play
sunny 69 70 FALSE Play

rain 75 80 FALSE Play
sunny 75 70 TRUE Play
overcast 72 90 TRUE Play
overcast 81 75 FALSE Play

rain 71 80 TRUE Don't Play

Copyright 2020, Dennis J. Frailey

Software Testing Topics

121

UT D

What Do We Want to Know?

Characteristics of attributes /

entities of

Relationships between

attributes

or different types

Examples:

— Which method is faster?

- How m

— Do effective peer reviews reduce
customer complaints?

Copyright 2020, Dennis J. Frailey

the same type

/ entities of the same

any defects?

Software Testing Topics

The First Step is to Organize the Data for
Analysis

First, we refine & compress the data v‘v
— Eliminate duplicates, errors, etc.
— Compute totals, sort data, etc.
— Perform appropriate data compression

o

Thenoun project.com

Then, we compute various derived measures

(computations)
Derived Derived Derived
Measure Measure Measure
Base Base Base Base Base
Measure Measure Measure Measure Measure

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 23

uUT D

Examples of Derived Measures

[Uni‘rs Per Mon’rh} [

LOC per
Staff Month

} [$ per Line of Code}

I N/ 1T N /7 N\

Units Head- Lines
Produced Months count | |of Code S Spent

.

(- i
Exactly what derived measures we want is

determined by our metric selection process
(based on our information needs).

~

J/

Copyright 2020, Dennis J. Frailey Software Testing Topics

124

UT D

One option is to simply look at the data:

We can look at the data

The Next Step is Analysis

as we have it

E3 Microsoft Excel - sorttest.xls

&) fle Edt Yew Inset Format Jools Data Window
i Hebp .8 x
PG SIS E o B 10% - @
: prigl ~10 B U EE=E OH-A
114 v ~

A | B c | =
1 |Division Employees Sales Total
2 |Africa 712 33,000,000
3 |Asia 381 48,000,000
4 |Europe 453 51,000,000
5 |North America 698 44,000,000
6 |South America 833 72 000,000
7 v
W 4 » M\Sheet1/ [< i
Ready

Copyright 2020, Dennis J. Frailey

We may want to sort the data
or do other simple processing

to make sense of it

BBC1

3

4 Millions
5 |Casualty 8.82
6 |Antiques Roadshow 7.68
7 |Changing Rooms 7.38
8 |DIY SOS 7.20
9 |Lenny Henry 7.03
10 |Holby City 6.99
11 |Ground Force 6.71
12 |Vicar of Dibley 6.34
13 |Ready Steady Cook 6.33
14 [National Lottery 6.27

15
Software Testing Topics

125

Ut D Another Option is to Graph the Data

How the Poor, Middle Class, Rich Spend Money

45

40 [

~

Il Often, a

N “$15-20k W $50-70k $150k + graph or

a chart makes
it very easy

to see what
the data are
telling us.

- J

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2 6

But Often There is Too Much Data or the
Relationships Are Not So Easy to See

(Statistical methods areN
often helpful in

g situations like these)

[Chvomogram 1.26. &)

Chaose e pearte [v] vaw Ormeie @B6H cooebyi[me v] sewans

Moy 28, 05 o 5 10) 0

106775

1311
1761

=D sa ot septamser 2010 @D @

o
D100 DLOLH D00
AN

'\“‘\‘\ Q1101 10\ 0\

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 2 7

ut D Contents

Definitions

Scales

Basic Analysis Approaches

Statistical Distributions

Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 28

Ut D Statistical Techniques Help Us Deal
with Many Situations

Statistical techniques can often be used to describe
the attributes and relationships

Examples:
- High and Low values (and how often each occurs)
— Average (Mean), Median and Mode

— Mathematical relationships between values

= For example, if you double the number of programmers, how
much do you reduce the schedule?

— Patterns of values

= For example, do most defects result from errors in
requirements, errors in design, or errors in coding?

— Qverall distribution of values

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 29

UT D Distributions

Suppose you evaluate 30 students on their programming
ability and come up with the following values:

Overall Total | Percent
e / Since all \
Very Poor 3 10.0% students are
Poor 6 20.0% accounted for,
Average 12 40.0% this is called a
Good 7 23.3% distribution of
Very Good 2 6.6% student ability
values. /
Total 30 100%

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 30

—L The Distribution as a Bar Graph

Student Programming Ability
45.0%
40.0%
35.0%
30.0%
25.0%

20.0% m Percent of Total
15.0%
10.0%

5.0% I .:

0.0% . . ' '

Very Poor Average Good Very
Poor Good

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 1

—L The Distribution as a Histogram

/A histogram\

looks like a
bar chart
with no

4 Histograms
spaces
between the

are often
used to show
\dlstrlbutlons.)
\ - / I I

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 2

Ut D Probability Distributions

Suppose one student is selected at random from the
group of 30.

What is the probability that the student will have
any given ability level?

Overall Total | Probability

Abilit

Very p‘;or 3 1 /If you represent the\

Poor 6 2 percentage as a

Average 12 4 probability, this is

Good 7 233 called a probability

Very Good 2 .066 distribution of
student ability

Total 30 1.0 values. /

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 3

UT D Requirements for a
Valid Probability Distribution

A probability distribution is the assignment of
probability values to each of the possible outcomes

= The probabilities must be numbers between 0 and 1

= The probabilities mustadd up to 1
The probability distribution represents the likelihood
that a randomly chosen value will have a given

OUtcome " Probability Distribution for Price of Lumber

in in August of 2010

S, P o> S, S, B St S

Software Testing Topics 1 3 4

Copyright 2020, Dennis J. Frailey

Calculating Probability of Other Situations

Suppose you want to know if a randomly chosen
student will be at least average in ability.

Overall Total | Probability Add up the probabilitieS'
Ability '
40 +.233 +.066 = .70
Very Poor 3 .10
Poor 6 .20
Yeraee L2 40 These are average
Good 7 .233 .
or higher
Very Good 2 .066
Total 30 1.0 The probability of a student
being at least average is .70

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 3 5

UT D

Uniform Distribution

= If all events are equally likely, this is called a
uniform distribution.

= If there are N options, the probability of any of
themis 1/N

Copyright 2020, Dennis J. Frailey

0.3

0.25
0.2
0.15 -
0.1
0.05 ~

Uniform Probability
Distribution

Optlon Optlon Optlon Option

1

4

~ mProbability

Software Testing Topics

136

Suppose There are Many Possible Values

Example: The ages of the software development staff
— Total staff size is 200 people
— Range of ages is from 18 to 72

There are 55 possible values

Age Total | Probability
18 1 005 There V‘;O“'d/l?‘: a
19 0 .000 very long iis
20 2 010 and
: very small probabilities
21 0 000 for most cases.
22 1 .005
This might be very
cumbersome to analyze.
Total 200 1.0

Copyright 2020, Dennis J. Frailey Software Testing Topics

137

Ut D Graph of Probability Distribution -
Line Chart

Age of Software Development Staff
(Probability Distribution)

0.045

0.04

e |
0.025 A \ v A
000(132 y\V_/\ \VI\—A I —Probability

0.01 _/ /_\A
0.005 [V

0

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 38

Ut D Graph of Probability Distribution -
Bar Chart

Age of Software Development Staff
(Probability Distribution)

0.045
0.04
0.035
0.03
0.025
0.02 -
0.015 -
0.01 -
0.005
0

OProbability

18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 39

What If There Are an Infinite Number
(or a very large number) of

Possible Values
Examples:

— Number of lines of code in each software product.
= Range: 11 to 128,045

In this case, it could be meaningless to have a
separate probability for each possible value.

Solution 1: Discretization

— Divide the possibilities into discrete ranges that
make sense for your purposes

Solution 2: Continuous Function
— Represent the values with a continuous function

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 40

uUT D

Discretization

Divide the list into discrete intervals

Age Range | Total | Probability | __

20 orless | 1 005 For many purposes,
21-30 39 195 these categories
31-40 62 S would pe useful and
41-50 45 225 having only k7
51-60 58 A categ_orles makes
61-70 > e analysis a lot easier

Over 70 3 o than having 55 of
— them.
Total 200 1.0

Copyright 2020, Dennis J. Frailey

Software Testing Topics

141

Ut D Bar Graph of Discretized Distribution

Data for Programmer Age

Probability for Each Age Range
0.35

0.3

0.25

0.2
0.15
o I
0.05 I
0 |

21-30 31-40 41-50 51-60 61-70 > 70

Note that this discretized graph tells us things that were harder to see before.

Copyright 2020, Dennis J. Frailey Software Testing Topics

142

Ut D Same Graph Using a Line Chart

Probability for Each Age Range

* et

02> / similar to this?

0.2 / \%

0.15 / \

0.1 / D

0.05 / \
oo/ N

Copyright 2020, Dennis J. Frailey

<20

21-30 31-40

41-50

51-60

Software Testing Topics

61-70 > 70

143

UT D Use of a
Continuous Distribution Function

For very large numbers (or infinite possibilities), it is
sometimes convenient to use a continuous function
whose shape approximates the distribution of the data.

Number of observations

Replacement rates at age 65 (% final salary)

The area under the curve is equal to 1.0 - the sum of
all probabilities.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 44

UT D Advantages and Drawbacks of
Continuous Functions

Advantages

- Many mathematical and statistical analyses can be
performed on the functions

= You can often make good predictions
= Or combine multiple independent variables and determine their

relationships
Drawbacks
- You cannot draw conclusions about individual values

= For example: what is the probability that a programmer is exactly
34.25 years old?

—You must draw conclusions about ranges of values

= For example: what is the probability that a programmer is between
34 and 35 years old?

Copyright 2020, Dennis J. Frailey Software Testing Topics

145

UT D Normal Distribution (Bell Curve)

This is a widely used continuous distribution
because many phenomena fit this shape.

2

"Bell Curve") 1 - «

Standard Normal f (w | My, O) - ——¢€ 27
Distribution V2o’

19.1%(19.1%
u is the mean or
average value

11.7%

-3 -25 -2 -15 -1 -05 1 15 2 25 3 35 4

Standard _ - _ —
Deviation ~4© 30 20 10 0 +1o +20 +30 +40

Z-Score -4 -3.5

0.1 2.3 15.9% 50 84.1 97.7
Cumulative
Percent

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 46

UT D Normal Distribution Variations

1 (x 1‘)2
2y _ 2
f(lL‘ I M,O’) - € 20
2o
10 | | | | | | | L | | | |
08
—~ 06
N
S
S04
02
0.0
| | | | | P | | | |
5 -4 -3 2 0 1 2 3 4 5
X

By Inductiveload - self-made, Mathematica, Inkscape, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3817954

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 4 7

UT D Example
Bell Curve Approximates Data

50-

40- ‘("Bell Curve"

30-

20-

10-

100 120 140 160 180 200

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 48

Real Data With Approximately Normal
Distribution

——Near Time of
Flight

——Far Time of Flight

Signal (V)

0 100 200 300

Time (ns)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 49

Ut D Uses of Normal Distribution (1 of 2)

If the data are distributed in a pattern that is similar to
normal distribution, we can often reach conclusions about
the data from known facts about the normal distribution

— This happens often with many natural phenomena

- For example: height

511 e

A /|

Heght Distridgtions for 20-year obd mee ang women in the LS

’\ 240 momm

7 Il '/||||

..

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 0

ur D Uses of Normal Distribution (2 of 2)

Many statistical concepts are easy to explain using
the normal distribution

— Because it has many very convenient statistical and
mathematical properties

"Bell Curve"

Standard Normal
Distribution

19.1%|19.1%

4 . 4 0."‘;:
1 - 7 l:"lt_:

15 2 25 3

Z-Score -4 -35 -3 -25 -2 -15 -1 -0.5 1 4
Standard 44 -30 -20 -10 0 +1o +20 +30 +40

159
umulative

Percen

Copyright 2020, Dennis J. Frailey Software Testing Topics

151

Normal Distribution Variants

The Normal Distribution is a
type of Gaussian Distribution

The Gaussian Distribution is a
type of Elliptical Distribution

Various Gaussian
Distributions

There are many ways to modify a
Gaussian distribution to fit specific
datasets

Copyright 2020, Dennis J. Frailey

Various Elliptical
Distributions

For some situations, an Elliptical
distribution will fit the data

Software Testing Topics 1 5 2

UT D

Copyright 2020, Dennis J. Frailey

Other Examples of

Continuous Distributions

AN

Normal Distribution

Uniform Distribution

Cauchy Distribution

t Distribution

N\

/S

AN

F Distribution

Chi-Square Distribution

Exponential Distribution

Weibull Distribution

N

N\

N

A\

LLognormal Distribution

Bimbaum-Suanders

(Fatigue Life) Distribution

Gamma Distribution

Double Exponential
Distribution

/ N\

Power Normal Distribution

Power Lognormal

Distribution

A\

__/

Extreme Value Distribution

Beta Distribution

Tukey-Lambda Distribution

-

For many phenomena
there are continuous
distributions that
approximate the actual

J

\

\ distributions. Yy

You find out using curve
fitting techniques

]

Software Testing Topics

153

ur D Many Natural Phenomena Fit the Chi
Square Distribution (C2 or z2)

0.15 0.5,
& 0125 o] ko18-20 —
= KZo9o10 —
g 0.1 o3l k=98=05 —
= .
& 0075
t ™
l 0(5 0.2+

0.025 ol

2 4 & 8 10 12 14

o 1 Il L 1
0 2 4 6 8 10 12 14 16 18 20

¥
C2 Distribution Variations on C2

Unlike the normal distribution, C2 is
constrained to have no negative values.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 54

ut D Contents

Definitions

Scales

Basic Analysis Approaches

Statistical Distributions

Other Statistical Concepts

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 5

Ut D Central Tendency Measures

A Measure Of Central Tendency Measures of Central Tendency

i S a most representative or typicol of all values In a group

single value
— that

attempts to describe a set of data
— by
identifying the central position within that set of data.

Slideshare.net

These are also sometimes called
summary statistics
or
9 measures of central location)

Copyright 2020, Dennis J. Frailey Software Testing Topics

156

UT D Mode, Median and Mean
(Central Tendency Measures)

= Mode: The value that appears most often

= Median: The value of the middle item

= Mean (@ or [B): The average of all values

Given these values: 1,2,2,3,4,7,9
Term Description Example Result
Mean |[Sum/ (1+2+2+3+4+7+9)/7 !l
Total Number of Values
Median | Middle value 1,2,2,3,4,7,9 3
Mode Most Frequent Value 1,2,2,3,4,7,9 2

Source: Wikipedia

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 7

uT D Mode, Median and Mean for Various
Distributions

(a) Negatively skewed (b) Normal (no skew) (c) Positively skewed

Mean
Madian
Mode Mode

Frequency

SRR T

The normal curve Positive direction

represents a perfectly
symmetrical distribution

SunE s 6 Examples of normal and skewed distributions

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 8

ur D Example of Skewed Distribution

50

Frequency (%)
25

0

1 2 3 4 5 6 7 8 9
Length of Hospital Stay (days)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 5 9

Uur D Notes about Mode (i of 2)

1. There can be no mode or more than one mode

- N0 mode - Bimodal - Multimodal
0.3

0.2 — .
g 3 o o B ?’ .:)1
5w i { 4
0.1 1 - 1 ” hﬁfﬁ J{ [h
l:‘f:{lQ'.’l'0:"'1"““;‘"""”"1’”2‘“";’;‘;"”
0 1] -]] n MATMOM

> When there is a lot of data and there are several
local maximum points, each is considered a mode

“i.e., any relative high point or peak in the data may be
considered a mode.

Copyright 2020, Dennis J. Frailey Software Testing Topics

160

UT D Notes about Mode (2 0f2)

2. The mode can be determined for data using
nominal, ordinal, interval, ratio and absolute scales

> Mean & median require higher scales

Mean {

Median - "Ea
=
Mode — =g
€ 0
e e e o g g-—m ————————————————
dd
S
80
<
- Nominal Ordinal Interval Ratio
Scale

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 1

UT D Notes about
Mode, Median and Mean

For normally distributed data, these three are equal

Mean
Median

Mode

Sym

For other distributions they may not be.

> So one way to tell if the normal distribution is a possible fit to
your data is to compute the mode, median and mean and see
if they are the same.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 6 2

Ut D Measures of Dispersion

* A Measure of Dispersion i Frer e
- is a i ','-'.'.: :é?:-,'..:
. oudl Sl wailied
= single value i Dk DATe
— that i . '8.;‘. .
= attempts to describe a set of data ST U L e
- by hh ktcif.gloriajohnson.u

identifying the spread of values within that set of data.

~

4 The most common measures of dispersion are:
Range
Variance, and
_ Standard deviation)

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 63

Urp The Range

= The Range is the distance between the largest and the
smallest values in a set of data

— (Requires an interval scale)

12, 25, 27, 29, 36, 38, 40, 43, 50, 54, 62

Range =62 - 12 =50

Web.cs.wpi.edu

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 64

UT D The Variance
(requires a ratio scale)

In statistics, particularly when looking at probability
distributions,

the Variance is a measure of how far a set of
numbers is spread out.

» This is also known as the dispersion or variation.

Variance =0
means all the numbers are the same

Variance = a small number
means all the numbers are close to each other

Variance = a large number
Means the numbers are widely dispersed

Copyright 2020, Dennis J. Frailey Software Testing Topics

165

UT D The Standard Deviation ()
(square root of the variance)

The Standard Deviation (denoted by the symbol o or

“'sigma”) is another measure used to represent the
amount of variation or dispersion of a set of data values

u is the mean or
average value

34.1% | 34.1%

Copyright 2020, Dennis J. Frailey Software Testing Topics

166

ur D Standard Deviation & Variance
= If the standard deviation or variance is small, it means
the data values are very close together (blue curve)

= If the standard deviation or variance is large, it means
the data values are dispersed (red curve)

Copyright 2020, Dennis J. Frailey

Frequency

The Normal {Bell) Curve

Data

Software Testing Topics

167

Calculations for a Discrete, Random Variable x

Suppose you have an ordered collection of numbers, X, on
a ratio scale

And suppose xis a random member of the collection
U = mean or average value

x; = ith possible value

p; = probability that x has the value x;

. n
Variance = i1 P * (x;—)2

There are many uses for these
calculations when doing statistical
analysis of measured data

o = \Variance

Copyright 2020, Dennis J. Frailey Software Testing Topics

168

CIil 1D Alternative Calculations for Variance

Suppose you have an ordered collection of numbers, X,
on a ratio scale

And suppose N is the number of members (the size) of
the collection

U = mean or average value

X; = ith value e
Variance = X (x-W)?

~

For some data sets, this formula for variance
may experience overflow, underflow or other
N calculation instabilities due to the sums of
squares required. See “Algorithms for
_ calculating variance” on Wikipedia. Y

o = \Variance

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 69

Ut D Any Questions?

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 0

UT D

End of
Lecture

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 1

uUT D

Copyright 2020, Dennis

References
Part 1

Bourque, P. and R.E. Fairley, eds., Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society Press, 2014. ISBN
978-0769551661. Available in PDF format (free) at www.swebok.orqg.

Crosby, Philip, Quality is Free. New York: McGraw-Hill, 1979. ISBN 0-07-
014512-1.

Fenton, Norman and James Bieman, Software Metrics: A Rigorous and
Practical Approach, Third Edition, Chapman and Hall, 2014. ISBN 978-
1439838228.

Juran, Joseph M., Juran on Quality by Design: The New Steps for Planning
Quality into Goods and Services. Free Press, 1992. ISBN-13: 978-
0029166833.

Project Management Institute, SWX - The Software Extension to the
PMBOK Guide Fifth Edition, Project Management Institute, 2013. ISBN 978-
1628250138.

Weinberg, Gerald M., Quality Software Management, Volume 1, Systems
Thinking,F Dorset House, New York, 1992, ISBN: 0-932633-22-6.

ailey Software Testing Topics

172

S I References
Part 2

Devore, Jay, N. Farnum, and J. Doi, Applied Statistics for
Engineers and Scientists, 3" Edition, Thompson, 2013. ISBN

978-1133111368.

Fenton, Norman and James Bieman, Software Metrics: A
Rigorous and Practical Approach, Third Edition, Chapman and
Hall, 2014. ISBN 978-1439838228.

Stevens, S. S., "On the Theory of Scales of Measurement”.
Science (7 June 1946). 103 (2684): 677-680.

Copyright 2020, Dennis J. Frailey Software Testing Topics 1 7 3

